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Abstract

Ecosystem services are deteriorating. It is essential to develop economic instruments that

promote the production of ecosystem services. Conservation agencies use, among other things,

payment systems for ecosystem services that remunerate private landowners to adopt pro-

environmental practices on their spatially contiguous lands. Iterative or sealed bidding pro-

cedures are well suited to provide efficient incentive systems. Experiments have shown the

superiority of iterative auctions. In order to better understand the processes implemented, we

propose here to analyze the strategies of the landowners in the case of sealed bids auction

format.
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1 Introduction

Ecosystem services are deteriorating, developing adapted economic instruments is a new chal-

lenge at the global level. In the majority of cases, threatened ecosystems are located on private

land (Rolfe et al., 2009). It is therefore essential to look for measures that promote the pro-

duction of ecosystem services by private landowners. Conservation agencies use, among other
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things, payment systems for ecosystem services that remunerate private landowners to adopt

pro-environmental practices on their land. The production of ecosystem services very often

requires coordination of spatially contiguous land management. As a result, auction proce-

dures seem well suited to provide efficient incentive systems. Different procedures are possible

ranging from sealed bidding auction format to iterative bidding auction format.

In experimental studies Rolfe et al. (2005) and Reeson et al. (2008) considered problems

of spatial agglomeration. They evaluated bid performance for creating connected landscapes.

The experiments of Rolfe et al. have been implemented with real landowners using both sealed

bidding and iterative auctions. For iterative auction formats, landowners were acquiring in-

formation each round, while for the sealed sealed bid format, landowners may communicate.

Experiments have shown that the spatial patterns obtained are less expensive in the case of iter-

ative auctions. Based on a scoring rule, Banerjee et al. (2015) consider a Conservation Auction

model. They study an iterative descending-price auction, that explicitly includes the spatial

objective into the selection criterion in the presence of a limited fixed budget. More complex

procedure was experimented by Banerjee at al. (2018).

We propose here to analyze in detail the strategies of the landowners in the case of a specific

sealed bids auction. In order to clarify the impact of communication, we make the assumption

in our model that landowner do not communicate with each other. We deduce behavior of the

bidder strategies with respect to the landowner type.

2 The auction design

We consider a set of N landowners. Each landowner participates by submitting an amount of

financial compensation to the auction. In exchange for this financial compensation, each owner
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undertakes to carry out preservation practices on his property.

We assume that each participant i has a private cost ci and that this private value is drawn in

an F distribution. Each participant i submits an amount bi. xi indicates the winning or losing

character of the participant i: xi = 1 if i wins, xi = 0 if i loses. Each winning participant in

the auction receives the amount of their bid.

From the point of view of the environmental agency, benefits are expected for each in-

dividual participant but also and especially when two contiguous participants adhere to the

conservation process. We consider linear configuration. All except the participants located at

the extremities of the stream, interior participants have two neighbors. This translates into the

environmental value function:

V ((xi)i) =
N∑
i=1

mixi + 2w
N−1∑
i=1

xixi+1

where mi is the benefit parameter for individual i and 2w the joint benefit parameter for two

neighbors.

The cost corresponding to the landowner submissions is given by:
N∑
i=1

bixi. Two alterna-

tives are available, the cost may be limited to a given level or integrated in the gain function:

G((xi)i, (bi)i) =
N∑
i=1

mixi + 2w
N−1∑
i=1

xixi+1 −
N∑
i=1

bixi

We consider the second case with mi = m for all i. We assume that distribution of private cost

value F is a common knowledge of the participants but not by the environmental agency. This

hypothesis is fundamental: the environmental agency cannot have a strategic behavior.
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2.1 Bidder strategy with score function announced

2.1.1 Continuous cost value Distribution

If we assume that distribution F is continuously differentiable, based on the first-order optimal-

ity condition, in case of uniform distribution F it is possible to deduce a continuous strategy

(see Appendix):

Bl(c) =


m if c < c∗

B0(c) if c∗ < c ≤ min(φ(c∗), c)

(1)

with B0 and φ linear in c, but also discontinuous strategies parametrized by x∗:

Bx∗(c) =


b1 if c < x∗

b2 if c > x∗

(2)

An iterative procedure

To obtain the bidders’ strategy, an alternative procedure based on the definition of Nash

equilibrium can also be used. It consists in constructing successive approximations of the bid-

der strategyB1, .., Bn based on maximizing the expected gain of the participantE[ci, b|Bn−1(.)]

assuming that the other participants use the bidder strategy Bn−1:

E[ci, Bn(ci)] = max
b
E[ci, b|Bn−1(.)]

Using this numerical procedure, starting with B1 = Bl, depending on the chosen estimation of

the expectation, the method converges to one of the discrete solutions Bx∗ . This confirms the

existence of multiple equilibrium.
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2.1.2 Discrete cost value Distribution

In order to remove the ambiguities relating to the multiplicity of equilibrium we consider the

case of discrete distributions for which we hope to be able to study in a more precise way.

Assume that the private cost take K different values in ascending order c1 < c2 < .. < cK . The

discrete density of the private cost is: f(c) =
K∑
k=1

θkδck with
K∑
k=1

θk = 1. For K = 2 we obtain:

Proposition 2.1 Assuming a discrete density of the private cost for two participants (N = 2)

with two different type values (K = 2) and the environmental agency maximizes a nonnegative

gain G(xi, bi) then:

(i) m+ w < c2:

(ia) if (c1 > m or c1 ≤ m, c2 < m + 2w) and (1 − θ1)c1 + (1 + θ1)c2 < 2(m + w) there are

an infinity of Nash equilibrium.

(ib) In the reverse cases, if c1 ≥ m and (1 − θ1)c1 + (1 + θ1)c2 > 2(m + w) or if c1 < m

and ((1 − θ1)c1 + (1 + θ1)c2 > (1 + θ1)(m + w) or c2 > m + 2w), participants of type 2 do

not bid and in the first case or if c1 +
θ1

1− θ1

w > m in the second case then b1 = m + w. If

c1 +
θ1

1− θ1

w ≤ m in the second case, b1 = m.

(ii) c2 ≤ m+ w:

if (1 + θ1)c2 − θ1c
1 ≤ m+ w then the bidder strategies are given by:

b1 = b2 = m+ w.

Proof: The gain net of costs to be maximize by the environmental agency is:

max
x1,x2∈{0,1}

G(x1, x2, b1, b2) = m(x1 + x2) + 2wx1x2 − (b1x1 + b2x2)
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Each agent maximizes his expected gain:

E(ci, b) = (b− ci)Pr[xi = 1]

We consider a Nash equilibrium, each participant follows the bid strategyB(.) hence: maxbE(ci, b) =

E(ci, B(ci)). Denote the optimal submission b1, b2 for the participant types. We successively

consider the two bidder types c1 and c2.

(i) If c2 > m+w, then b2 ≥ c2, bidder of type 2 cannot win alone, hence his bid b must satisfy

b ≤ 2m + 2w − b1, his expected gain is increasing with b, hence b2 = 2m + 2w − b1, so

b1 < m+ w < b2.

For bidder with lower value c1, he is sure to win with b ≤ b1 and has a probability of winning

θ1 with b1 < b ≤ b2, hence he respectively may bid b1 and b2, hence for a Nash equilibrium:

E1(c1, b1) = b1 − c1 ≥ θ1(b2 − c1) = E1(c1, b2)

Hence at optimum, b1 will be the highest value such that: b1 − c1 ≥ θ1(b2 − c1), b1 + b2 =

2m+ 2w then b1 = 2m+ 2w − b2 and we deduce c1(1− θ1) + b2(1 + θ1) ≤ 2m+ 2w and:

c2 ≤ b2 ≤ b2
∗ =

2

1 + θ1

(m+ w)− 1− θ1

1 + θ1

c1

Reversely optimal b2 will be such that:

E2(c2, b2) = θ1(b2 − c2) ≥ E2(c2, b1) = b1 − c2(< 0)

hence positive gain implies b2 ≥ c2, so c2 ≤ b2 ≤ b
2

=
2

1 + θ1

(m+ w)− 1− θ1

1 + θ1

c1.

If c1 < m, participant of type 1 always wins with bid m, then we deduce that b1 must not be

lower than m, hence in this case: b2 = c2 ≤ b2 ≤ b
2

= min(
2

1 + θ1

(m + w)− 1− θ1

1 + θ1

c1,m +

2w), and in the two cases:
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b1 = 2m+ 2w − b2 ≤ b1 ≤ b
1

= 2m+ 2w − c2. Hence we get an infinity of equilibrium.

In the reverse cases, bidding with participants of the two types is impossible, only participants

of the first type can bid. If c1 > m, b1 = m + w. If c1 < m, bidder of type 1 may bid m

or m + w, his expected gain is respectively m − c1 and θ1(m + w − c1), hence he bids m if

m− c1 > θ1(m+ w − c1) i.e. if c1 +
θ1

1− θ1

w < m and bids m+ w if not.

(ii) If c2 ≤ m + w, two cases are available 2b1 = 2b2 = 2m + 2w or b1 + b2 = 2m + 2w

with b1 < b2. In the first case, the two participants always win, the gain are respectively:

m+ w − c1,m+ w − c2. Considering the second case multiple strategies are available but we

successively deduce:

θ1(b2 − c1) ≤ b1 − c1 = 2m+ 2w − b2 − c1

θ1(b2 − c2) ≤ 2m+ 2w − b2 − (1− θ1)c1 − θ1c
2

(1 + θ1)(b2 − c2) ≤ 2m+ 2w − (1− θ1)c1 − (1 + θ1)c2

θ1(b2 − c2) ≤ 2θ1

1 + θ1

(m+ w)− θ1
1− θ1

1 + θ1

c1 − θ1c
2

Hence the gain difference between the second and the first case satisfies:

θ1(b2 − c2)− (m+ w − c2) ≤ −1− θ1

1 + θ1

(m+ w + θ1c
1 − (1 + θ1)c2) < 0

hence gain is larger in the first case for the two types of participants. �

The proposition highlights the difficulty in obtaining bidder strategies. Participant gain can

be lower for participant of higher type.

Discrete mixed strategies

In the case c2 > m + w, we consider discrete and equidistant mixed strategies bi +
2j − 1

2n
(b
i − bi), j = 1, .., n with respective probability pij for participant of type i = 1, 2
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with n ≥ 2. We get the matrix of gain:

b2 c2 +
∆b

2n
c2 + 3

∆b

2n
. c2 +

2n− 1

2n
∆b

b1

b1+
∆b

2n
(b1 − c1 +

∆b

2n
, θ1

∆b

2n
) (b1 − c1 +

∆b

2n
, 3θ1

∆b

2n
) . (b1 − c1 +

∆b

2n
,

2n− 1

2n
θ1∆b)

b1+3
∆b

2n
(b1 − c1 + 3

∆b

2n
, θ1

∆b

2n
) (b1 − c1 + 3

∆b

2n
, 3θ1

∆b

2n
) . (θ1(b1 − c1 + 3

∆b

2n
), 0)

. . . . .

b1+
2n− 3

2n
∆b (b1 − c1 +

2n− 3

2n
∆b, θ1

∆b

2n
) (b1 − c1 +

2n− 3

2n
∆b, 3θ1

∆b

2n
) . (θ1(b1 − c1 +

2n− 3

2n
∆b), 0)

b1+
2n− 1

2n
∆b (b1 − c1 +

2n− 1

2n
∆b, θ1

∆b

2n
) (θ1(b1 − c1 +

2n− 1

2n
∆b), 0) . (θ1(b1 − c1 +

2n− 1

2n
∆b), 0)

where ∆b = b
1 − b1 = b

2 − b2. Probabilities are deduced from the equality of earnings for

the different discrete strategies. Numerical results highlight that significant probability values

are concentrated for b1
n and b2

1 with the following rankings: p1
1 > p1

2, p1
2 < .. < p1

n and

p2
1 > .. > p2

n. Moreover, once again, expected gain for participant of type 2 (θ1
∆b

2n
) is lower

than for participant of type 1 (b1 − c1 +
∆b

2n
).

In many cases, sum of bid’s participants are equal to 2(m+w) generating in case of a high

value for the agency, a null gain for agency based on announced scoring function. It is therefore

relevant for the agency not to use its real values and to announce in its score criterion values

lower than these values.

Communication is not necessary for coordination of participants.

2.2 The score function is not completely announced

We now consider that w is not announced as in Elyakime et al. 1994., hence not perfectly

known by the participants. We assume that w = w1 + ρ(w2 − w1) and ρ is drawn from the

cumulative distribution G with support [0, 1] We consider discrete cost value distribution with
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c2 > m+ w2. In this case, the probability that the principal gain is positive is equal to:

Pr[b1+b2 ≤ 2m+2w1+2ρ(w2−w1)] = Pr[ρ ≥ b1 + b2 − 2m− 2w1

2(w2 − w1)
] = 1−G(

b1 + b2 − 2m− 2w1

2(w2 − w1)
)

with 2m+ 2w1 ≤ b1 + b2 ≤ 2m+ 2w2, the expected gain for participant of type 1 is given by:

E1(c1, b1) =(b1 − c1)(θ1 + (1− θ1)(1−G(
b1 + b2 − 2m− 2w1

2(w2 − w1)
))

≥θ1(b2 − c1)(1−G(
b1 + b2 − 2m− 2w1

2(w2 − w1)
) = E1(c1, b2)

Hence at optimum, b1 will be the highest value such that: E1(c1, b1) ≥ E1(c1, b2), the expected

gain for participant of type 2 is given by:

E2(b2, c2) = θ1(b2 − c2)(1−G(
b1 + b2 − 2m− 2w1

2(w2 − w1)
)) ≥ b1 − c2

From b1 < c2 the inequality is always valid. The maximization with respect to b2 gives:

2(w2 − w1)(1−G(
b1 + b2 − 2m− 2w1

2(w2 − w1)
)) = (b2 − c2)G′(

b1 + b2 − 2m− 2w1

2(w2 − w1)
)

Hence strategy of the participant depends on the distribution of the parameter w for the envi-

ronmental agency. Assuming a uniform distribution:

b1 =m+
w2 − θ1w1

1− θ1

+
c1 − b2

2

b2 =m+ w2 +
c2 − b1

2

We deduce:

3b1 =2m+
2

1− θ1

((1 + θ1)w2 − 2θ1w1) + 2c1 − c2

3b2 =2m+
2

1− θ1

((1− 2θ1)w2 + θ1w1) + 2c2 − c1
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with the conditions relative to b1 + b2 and bi ≥ ci:

2m+
2

1− θ1

((3− 2θ1)w1 − (2− θ1)w2) ≤ c1 + c2 ≤ 2m+
2

1− θ1

((1− 2θ1)w2 + θ1w1)

3 Discussion and conclusion

We show that it is possible to obtain the bidder strategies. We find that the landowner with the

largest cost may have a lower gain.

For N > 2, bidder strategies are attainable by means of further calculations. It would

be possible to test the confirmation of the previous result in a more general framework. In

conclusion, we showed that it is possible to obtain the bidder strategies.

We assume that distribution of private value F is a common knowledge of the participants

but not by the environmental agency, hence the environmental agency cannot have a strategic

behavior. If the environmental agency knows the distribution F , her can have a strategy: an-

nounce a lower parameters to build the scoring criterion or do not announce parameters of the

score function.
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Appendix

We assume that the principal has a non negative gain. Each agent has a private value with

distribution F of finite support and maximizes his expected gain:

E(c1, b) = (b− c1)Pr[x1 = 1]
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We consider a Nash equilibrium, each agent follows the bid strategyB(.) hence: maxbE(c1, b) =

E(c1, B(c1))

Let N = 2, the program of the principal is to maximize his gain:

max(m− b1,m− b2, 2m+ 2w − b1 − b2)

If b1 > m+ 2w then 2m+ 2w − b1 − b2 < m− b2 so x1 = 0. If b1 < m+ 2w then m− b2 <

2m+2w−b1−b2 so the maximum reached for the principal is max(m−b1, 2m+2w−b1−b2).

We deduce that if the principal wants to insure a gain greater than G0, the bid b of the agent is

given by the maximum:

max((m− c1)Im−c1≥0, (b− c1)Pr[2m+ 2w − b−B(u2) ≥ 0])

with Pr[2m+2w−b−B(u2) ≥ 0] = F (B−1(2m+2w−b)). We first consider the problem of

the right program which maximizes (b− c1)Pr[2m+ 2w− b−B0(u2) ≥ 0]) with bid strategy

B0. The corresponding first-order condition is given by:

F (B−1
0 (2m+ 2w −B0(c))) = (B0(c)− c)F

′

B′0
(B−1

0 (2m+ 2w −B0(c)))

Let the function φ defined by: B0(φ(c)) = 2m+ 2w −B0(c), we deduce:

B′0(φ(c))F (φ(c)) =(B0(c)− c)F ′(φ(c)) (3)

B0(c) +B0(φ(c)) =2m+ 2w (4)

Assume F uniform distribution, F (x) = x then, the system has a linear solution: B0(c) =

2

3
(m+w)+

c

2
with φ(c) =

4

3
(m+w)− c. Due to limited value for bid strategy we deduce that

the maximal private value which permits the agent to bid satisfies:
1

3
(2m+2w)+

v

2
≤ m+2w
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i.e. c ≤ c with c =
2m+ 8w

3
. Let c∗ the private value at which the agent changes of strategy:

m− c∗ = (B0(c∗)− c∗)φ(c∗) = (
2

3
(m+ w)− c∗

2
)(

4

3
(m+ w)− c∗)

2(m− c∗) = (
4

3
(m+ w)− c∗)2

Hence B(c) = m for c < c∗. Moreover B0(φ(c∗)) = 2m + 2w − B0(c∗) = φ(c∗). As

B′0(c) =
1

2
, so it is impossible that B0(c) ≥ c for c > φ(c∗). Hence:

Bl(c) =


m if c < c∗

B0(c) if c∗ < c ≤ min(φ(c∗), c)

(5)

But we have not shown the uniqueness of the solution. So other strategies are available, notably

strategies provided by step functions. And this is indeed the case, if we consider a B function

defined by:

B(c) =


b1 if c < x∗

b2 if c > x∗

(6)

with b1 ≥ x∗.

The optimality conditions are the following:


b1 − c ≥ x∗(b2 − c) if c < x∗

x∗(b2 − c) ≥ b1 − c if c ≥ x∗

(7)

with b1 + b2 = 2m+ 2w. The inequalities are checked if and only if:

b1 − x∗ ≥ x∗(b2 − x∗) (8)

x∗(b2 − x∗) ≥ b1 − x∗ (9)
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Hence b1 = b2x∗+x∗(1−x∗), from b1+b2 = 2m+2w we deduce (b1−x∗)(1−x∗) = 2(m+w)x∗

with b1 ≥ x∗ and 0 < x∗ < 1. So it exists an infinity of function B satisfying the optimality

conditions. Moreover, if we consider a B function defined by:

B(c) =



b1 if c < x1
∗

.

bi if xi−1
∗ < c < xi∗

.

bn if c > xn−1
∗

(10)

with bi ≥ xi∗, i = 1..n− 1. By similar reasoning we obtain that:

b1 − x1
∗ = xn−1

∗ (b2 − x1
∗) (11)

.

xn−i+1
∗ (bi − xi∗) = xn−i∗ (bi+1 − xi∗) (12)

.

x1
∗(bn − xn∗ ) = x2

∗(bn−1 − xn∗ ) (13)

with bi + bn−i = 2(m+ w) for i = 1..E[n
2
] and the existence of infinity of function B.
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