
On Artesian Aquifers :
Pressure as a New Common ✩

Hubert STAHN,1

Aix-Marseille Univ., CNRS, EHESS, Centrale Marseille, AMSE.

Agnès TOMINI,2

Aix-Marseille Univ., CNRS, EHESS, Centrale Marseille, AMSE.

Abstract

VERY PRELIMINARY VERSION

Key words: common-pool resources, externalities, optimal management

1. Introduction

Common-pool resources (CPRs) have been extensively studied in the literature since
the seminal paper of Gordon [12], or the Tragedy of Commons of Hardin [13]. Most of
these papers address issues related to the characteristics of non-excluability and rivalry
in consumption. Indeed it is diffi cult to assign adequate property rights to control ac-
cess to resource stock, and any amount of resources which is extracted is not available
for others anymore. However, the degree of rivalry can differ, as well as the resulting
externalities. Private appropriation especially reduces the available stock, generating a
series of externalities associated with stock variation. Such stock externalities e.g. occur
when harvesting almost all common pool resources. This is, of course, not the case for
resources where the stock is infinite (e.g. solar energy resource). But it may also not
true for some resources available in finite amount. This is especially the case for confined
aquifers, i.e. aquifers confined between an upper and a lower impermeable layer which
obtain their recharge from a distant and more elevated aquifer which is often unconfined.
For these aquifers, when drilling a well, water naturally flows out without any pumping
(i.e. the artesian property) and the withdrawal from the confined aquifer is immediately
compensated so that there is no dewatering at all. The absence of stock externality there-
fore suggests that this resource does not suffer overexploitation under open access, and
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needs no regulation. The main objective of this paper is to show that this intuition is
wrong. The basic point beyond this paper relay on the idea that the artesian property of
an individual well is mainly related to the global water pressure inside a confined aquifer.
This pressure externality leads under an open access regime to an excessive number of
wells and an overexploitation of the resource. The result is obtained by contrasting the
outcome with open access to the one induced by a socially-optimal well drilling strat-
egy which internalizes this externality. In other words, even if there is no decrease in
groundwater stock, we show that the behaviors of economic agents are not aligned with
the socially-optimal outcome.

Most of the litterature on groundwater mamagement never considers this case. Since
Smith [32] seminal contribution, stock externalities reflects the effects a reduction of
a resource stock may have on economics decision. A lower stock actually creates two
distinguished effects (Burt and Provencher [5]): A reduction in extraction opportunities to
all others, and an increase in future extraction costs for all users. Stock externality actually
represents the former effect, and arises because exploitation of resource is constrained by
a finite resource stock. The latter effect represents the pumping cost externality, and
arises because the cost of extraction depends on the resource stock. Most of the studies
however irrespectively used to refer to one or the other, but only include pumping cost
externality in their model (e.g. Gisser and Sanchez [11]).
Groundwater has been extensively studied since the seminal paper of Gisser and

Sanchez [11], who conclude that welfare gains from public management are negligible.
A large part of the follow-up literature still analyzes the potential role of water manage-
ment under different assumptions, but no clear-cut answer has been provided. A number
of studies compares perfect competition with socially-optimal management outcomes. For
instance, Provencher [25], and Provencher and Burt [26] respectively show that property
rights allow to recover a large part of welfare gains, but these gains remain relatively low.
Allen and Gisser [1] still get a small difference between competition and social planner,
while Brill and Burness [3] find an increased divergence between both scenarios under
different hydrologic and economic assumption including demand growth, declining well
yields or low social discount rates. Another part of the literature rather contrasts the so-
cial planner’solution with strategic behaviors (Negri [22], Rubio and Casino [28]). Rubio
and Casino [28] for instance confirms Gisser and Sanchez result. Some papers actually
expand this literature in a number of directions, including uncertainty (Knapp and Ol-
son [16], Tsur and Graham-Tomasi [39]), or conjunctive surface water use (Azaiez [2],
Pongkijvorasin and Roumasset [24], Stahn and Tomini [34] and [35]). All this work never-
theless assumes that aquifer behaves as a “bathtub”with perfect hydraulic conductivity.
This assumption is equivalent to assume a bottomless aquifer, and enable to capture only
one effect resulting from stock variation, that is the pumping cost externality. Recent
papers introduce a spatial representation of the aquifer considering that transmissivity
is not infinite, such that the stock available to users, and the impact on users’decisions
may differ according to the location of extraction (Brozovic et al. [4], Chakravorty and
Roumasset [6], or Chakravorty and Umetsu [7]). Brozovic et al. [4] establish that welfare
gains may be mis-estimated under the “bathtub”assumption. As a consequence, those
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studies show that policy recommendations based on such basic hydrologic assumptions
may be irrelevant. Nevertheless, all these studies analyze the magnitude of externalities
and ineffi ciency within the specific context of unconfined aquifers.

To the best of our knowledge, only Worthington et al. [40] consider confined aquifers.
Adopting a dynamic programming system applied to the Crow Creek Valley aquifer, they
characterize the optimal seasonal water and contrast it with the competitive outcome.
They show that there may be significant welfare gains from a public management. They
however fail to capture specific features of confined aquifers, since they merely expand
the standard model based on a simple balance equation of water stock, considering effect
of pumping activities on groundwater stock. Artesian aquifers are groundwater reservoirs
confined by impermeable layers where water is under pressure, such that water may
naturally flow over the top of a drilling well, without the need of pumping. But the returns
of each well is typically related to the pressure of the confined aquifer. Drilling a new well
reduces the pressure of the whole aquifer and therefore exerts a negative externality on
the returns of existing wells. This is precisely what we have called a pressure externality
which requires an overall management of the number of wells.
There exist many artesian aquifers all over the world. The Great Artesian basin in

Australia is considered as the largest and deepest artesian basin in the world, underlying
22% of the continent. Other important systems are the Edwards aquifer in Texas (USA),
or the Northern Saharan Aquifer System in the north of Africa. We also find artesian wells
in the South of the city of Vancouver, or in several areas in India which provide water for
millions people. Nevertheless, this resource is subject to the “rule of capture”, and thus
threatened by human pressure. Moreover, the flow of many wells remains uncontrolled.
As such, optimizing the exploitation of this resource, and the production of groundwater
reservoirs, is a strong challenge. Some regulations have already been implemented in
some areas to limit adverse impacts. For instance, the St John River Water Management
District encourages wells owners to control flow, and even abandon problem wells by
properly plugging them.

In this paper, we develop an hydro-economic dynamic model based on fluid mechanism
to adequately consider time evolution of water pressure in the aquifer. We specifically use
the fluid dynamics to describe the relationship between water stock, pressure, and water
discharge. On this basis, we first assume that this resources is under a open access regime.
This means that additional wells are drilled until the marginal cost of an additional well is
equal to the private marginal returns, this last quantity being, under a pure competitive
assumption, in relation with the water price. In a second step, we introduce an optimal
management problem of the number of wells which takes into account this pressure
externality. we characterize, for both management regimes, the long-run steady values
and there property with respect to changes in the economic and hydrologic parameters
of the model. We finally compare these two management regimes. For that purpose we
consider the open access case and introduce two rates. The first measures the yield losses
per wells compared to optimal management case while the second measures the rate of
change on the long run aquifer level. These rates stands respectively for proxies of the
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loss of pressure and the overextraction behavior. we also provide a sensitivity analysis of
these rates to the economic and hydrologic parameters of the model.

The remainder of the paper is organized as follows. The specific features of a confined
aquifer especially concerning the consequences of the water pressure model are presented
in Section 2. Section ?? presents the main economic characteristics of our system and
analyses the short and long run properties of this hydro-economic model under free access.
Section 4 analyses the centralized water management problem Section ?? contrasts this
two regimes in term of pressure losses and overextraction, and Section ?? concludes.
Proofs are relegated to an appendix.

2. Aquifer systems with flowing artesian wells

Confined aquifer is a relevant example of common-pool resource for which rivalry
may be nearly questioning. Indeed, units of water withdrawn from such aquifers are
not available anymore, but the same amount of the total stock in the ground is still
available for others. In other words, there may be private appropriation of water, but the
availability of the resource is not reduced. What is nevertheless reduced is water pressure.
More precisely, confined (artesian) aquifers are overlain by a relatively impermeable layer,
such that water is under a pressure greater than atmospheric. Consequently water may rise
above the top of the aquifer, even above the land surface when a drill hole penetrates the
aquifer. We especially observe wells, which naturally flow to (or above) the land surface,
without the need of pumping, when the potentiometric line,1, is above the surface. This
level furthermore represents the pressure exerted by water, given the force of gravity.
Consequently, the confined layer remains saturated, even with exploitation. However,
abstraction of groundwater resources implies variations in pressure, which in turn trigger
falls in water flowing at ground surface.
These different characteristics result from a specific geological structure of confined

aquifer. We used to distinguish two parts: the outcrop area, or the recharge zone, and the
confining area. The first part is usually located at a high elevation (e.g. near mountains)
exposed at the ground surface, at a considerable distance away from the second part
which is at a lower elevation, beneath an impermeable layer. Broadly speaking, the
first part behaves as a “bathtub”unconfined aquifer with a flat bottom of area Ar and
perpendicular sides, where we observe a water table level h ∈ (0, hmax), which may rise
and fall according to recharge and artificial discharge. This specific level corresponds
here to the potentiometric line. The second part is of area Ac, and is already full to its
capacity. This part is referred hereafter as the artesian aquifer. We moreover assume
that the elevation of the artesian aquifer is normalized to zero, such that the elevation of
the water table defines the difference between the piezometric line and the elevation of

1The potentiometric line is an imaginary line where water pressure is equal to atmospheric pressure.
Water will rise to this specific level. In an unconfined aquifer, the potentiometric line is equivalent to the
water table level.
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the upper surface of the confined area. These assumptions ensure the existence of flowing
artesian wells.
Let us notice R the potential recharge, i.e. all water available at the surface, which

may or may not reach the ground. The part of the potential recharge that effectively soaks
into the soil represents the actual recharge, while the remaining water runs off over land.2

In other words, only the proportion (1 − ρ)R recharges the aquifer. We finally assume
that there is no exogenous discharge. The figure 1 illustrates this specific structure.

-� Ar -� Ac

6h: Water table

0 Ground level

hmax

Potentiometric line

Outcrop area

(1− ρ(h))R?

6 6 6
r(h) r(h) r(h)

Figure 1: Schematic representation of a confined aquifer

The hydrodynamics of confined aquifers results from flows and interaction between
those two parts. More precisely, the actual recharge enters the upper outcrop area and
moves slowly down toward the confining layer. When there exists a well, water may flow
out of this well, because of the pressure exerted by the weight of groundwater, without
any change in the volume of water within the confining part. Artesian groundwater
exploitation actually results in changes in volume storage in the outcrop area only, and
consequently in pressure declines. Since there is less pressure to cause a well to naturally
flow to the land surface, less water will rise to the surface. From fluid dynamics, we can
characterize the relationship between water pressure and the water table level, h, and

2This distinction is commonly used in the hydrogeological literature (e.g. Rushton [30]).
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then deduce the maximum water yield flowing out a well using the Torricelli’s formula.3

More precisely, let us assume that k is the diameter of the drill hole, i.e. a technological
characteristics, and g is the acceleration due to gravity, the maximum water yield, r, is
approximately given by the following equation:4

r(h) = k
√

2gh (1)

We can easily observe that the lower water table, the lower the maximum water yield
(r′(h) > 0). This means that a lower pressure is exerted by water, and thus a smaller
amount of water flows at the surface. By abuse of language, water yield approximatively
captures the pressure (given the technology k), and changes in water yield is equivalent to
changes in artesian pressure. Moreover, if there are n active wells operating at capacity,
the total water discharge is of w(h) = r(h)n. We will consider n, in the rest of the paper,
as a real number. This means, for instance, that the last well is only partially active.
Hence, we can characterize the hydrodynamics of confined aquifers by two equivalent

formulations: a law motion based on changes in the water table levels, h(t), in the outcrop
area, or a law motion based on changes in the maximum water yield, r(t), resulting from
changes in the pressure of water in the confining part. The dynamics of water table levels
results from a physical water balance between inflows and outflows: the actual recharge
(1 − ρ)R is the source of incoming water, and outflows are the sum of water discharge
flowing at the surface in each well, w(h(t)) = r(h(t)))n(t). Within this context, time
evolution of the water table (as long as h ≥ 0) in the outcropping area is associated to
changes in the piezometric water head of the whole aquifer, and is described as follows:

ḣ(t) =
(1− ρ)R− w (h(t))

sAr
(2)

with s the storativity coeffi cient of the aquifer. We can notice that this dynamics is
state-dependent on the contrary to the law motion of water table in unconfined aquifers.
Using Torricelli’s formula (1), we can characterize the second dynamics. Indeed, any

additional well allow additional outflows, but this also mean that water pressure will be
reduced, and consequently water yields of existing wells. From equation (1), we get the
time evolution the maximum water yield:

ṙ(t) =
kgḣ(t)√
2gh(t)

=
k2gḣ(t)

r(t)
(3)

Using the dynamics (2), it follows that the dynamics of the yield of an artesian well is
given by:

ṙ(t) =
k2g

r(t)sAr
[(1− ρ)R− r(t)n(t)] (4)

3This theorem is an application of the Bernouilli’s theorem relating the pressure, velocity and elevation
for a steady flow system. The Toricelli’s formula is a statement for fluid flowing out of an orifice.

4This approximation is based on the motion of a frictionless and incompressible fluid (i.e. Bernouilli’s
hydrodynamic formula) where the water velocity inside the aquifer and the discharge of the artesian well
is assumed to be negligible (since diameter of the well is negligible with respect to the area of the aquifer)
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This second dynamics sounds more economically-oriented since outflows results from the
economic decision to build new wells, but it is quite unusual because it is based on
the accumulation of resource flowing out a reservoir. However, more water out of the
aquifer means that the pressure is correspondingly altered. This formulation interestingly
captures that the pressure of the water behaves as a common-pool resource. Consequently,
we may expect the existence of a new externality, different from pumping cost contrary
commonly observed in analysis of unconfined aquifers. This pressure externality results
from the effect of an additional well on future yields.
It remains to set the initial condition of this system. For simplicity, we assume for

Eq. (2) that the initial level of the water table is h(0) = hmax or, equivalently, for Eq. (4)
that the initial yield is r(0) = k

√
2ghmax.

3. Confined aquifer as an open access resource

As recharge occurs at elevated areas, we intuitively assume that exploitation of such
an aquifer occurs above the confined part of the aquifer in the distant lowest areas like
plains or valleys where the economic activity take place. The water demand is described
by an decreasing inverse water demand for the overall production of water, P (w) with
P ′(w) < 0 and and providing a social benefit

∫ w
0
P (ω)dω. Moreover, we ignore possible

conveyance losses, and we thus assume that all water flowing at the surface is the actual
volume of water used by consumers.
Individual wells are built to fullfill this demand, such that the number of wells cor-

respond to the number of well owners. The well owner faces an instantaneous profit
function:

Π = p(t)r(t)− c (5)

with p(t) the market price the owner receives for the yield r(t) = k
√

2gh(t) of her well,
and c > 0 the annual exploitation cost of her well. Following the literature on irriga-
tion networks (e.g. Chakravorty and Roumasset [6]; or Jandoc, Juarez, and Roumasset
[14]), this cost function includes among others the per-period equivalent of construction
cost, operating and maintenance cost, and water provision because of irrigation networks,
conveyance structures linking all that wells and distribution to consumers. Now consider
that a confined aquifer is exploited by myopic well owners, who decide to exploit the
aquifer when there is a positive profit. The resource being in open access, this also means
that new wells are drilled as long as the observed profit remains positive. This free-entry
condition therefore induces the following dymanics of the number of wells:

ṅ(t) = α (P (n(t)r(t)) r(t)− c) (6)

with α > 0 an adjustment parameter.
Even if there is no dewatering of the confined par of the aquifer, the yield of any

additional well however reduces the water table level, h(t), in the outcrop area. But a lower
water table in the outcrop area reduces the pressure in the confined aquifer and therefore
lowers the yields of each well. A complete description of the dynamics of the number of
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well and their yields can be obtained either by combining the free-entry dynamics (Eq.(6)
with those of the yields (Eq.(4) or, with the help of the Toricelli’s formula linking the
return to the water table, by combining the free-entry dynamics (Eq.(6) with those of the
water table in the outcrop area (Eq. 2). Hence we have:{

ṅ(t) = α
(
P
(
n(t)k

√
2gh(t)

)
k
√

2gh(t)− c
)

sArḣ(t) = (1− ρ)R− n(t)k
√

2gh(t)
(7)

XXX

The open access hydro-economical equilibrium is thus obtained by setting the time
variation of the number of wells, and that of the water table levels in the outcrop area
equal to 0, ṅ = ḣ = 0. We easily deduce that the number of wells under open access is as
follows:

nm =
(1− ρ)R

c
P ((1− ρ)R) (8)

This number depends on the actual recharge, weighted by somehow a profitability rate.
We then derive the steady state value for the water table level:

hm =
1

2g

(
c

kP ((1− ρ)R)

)2
(9)

Then using the Toricceli formula (1), we can respectively derive the long run maximum
water yield:

r(hm) =
c

P ((1− ρ)R)
(10)

and the global water consumption:

w(hm) = P ((1− ρ)R) (11)

We can even prove that the open access hydro-economic equilibrium is stable, as it
summarizes in the following Proposition.

Proposition 1. There exists a unique steady state which satisfies local saddle point sta-
bility.

XXX
décrire les élasticités
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Table 1: Comparative statics
Effects on

Parameters the water table wells number water consumption water yield
Cost (c) + - 0 +

Diameter of the well (k) - 0 0 0
Recharge (R) + +/− + +

Infiltration rate (ρ) - +/− - -

4. Optimal management of an artesian aquifer

The objective of the social planner is as usual to choose the highest level of groundwater
exploitation, accounting for the hydrodynamics of the aquifer. She can thus use one of the
two formulations to characterize the optimal supply of water to fulfill the overall water
demand. First, assume that the social planner aims to control at each time period t the
amount of water flowing out wells, she will choose the number of active wells, (n (t)),
accounting for the exploitation cost, cn, and given the flowing water dynamics (4). If
δ > 0 denotes the discounting rate, she maximizes the discounted sum of social benefits
net of the sum of the well exploitation costs:

max
(n(·))

∫ +∞

0

((∫ r(t)n(t)

0

P (ω)dω

)
− cn(t)

)
e−δtdt

s.t. ṙ(t) =
k2g

r(t)sAr

[
(1− ρ)R− r(t)

m∑
i=1

ni(t)

]
(12)

If now the social planner wants to choose the water supply per area, w(t), which is
equivalent to the choice of the number of wells per area she will account for the usual
dynamics of the water table (2). Remember that the instantaneous yield of each well
is related to the water table (see Eq. (1). We can thus re-formulate the optimization
programm following a more standard approach:

max
(w(·))

∫ +∞

0

((∫ w(t)

0

P (ω)dω

)
− c

(
w(t)

k
√

2gh(t)

))
e−δtdt

s.t. sArḣ(t) = (1− ρ)R− w(t) (13)

This quite apparent usual problem in the groundwater literature should however not be
misinterpreted. First, the level h(t) is not the water table of the aquifer, but the potentio-
metric level. Remember that this level corresponds to the water table in the outcropping
area, while the confining part is never dewatered. Moreover, given our normalization
elevation rule, the water table must be positive in order to ensure the artesian property.
Secondly, the dependance of the cost function on the argument h(t) cannot be used to
interpret a pumping cost externality, even if this function is decreasing and convex in
h(t), since there are typically no pumping cost for artesian wells. The presence of h(t)
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represents the pressure externality. For instance, a decrease of the piezometric water table
reduces the water yield. This requires, for a given water production level, w(t), to drill
additional wells and therefore to globally increase the well management cost in a given
area.
This new setting has however one failure. The co-state variable, λ(t), associated with

the water table dynamics in the program (13) stands as usually for the shadow price of
the decrease of one unit in the water table. This variable only partially captures the
shadow price of a unit of water naturally rising at the surface from an artesian well. This
value is actually given by the co-state variable, Γ(t), associated to the dynamics using
in the optimization problem (12). This variable measures the monetary consequences
of a decrease in the yield of an artesian well. However, let us respectively denote the
future values at t of the two programs (12) and Eq. (13) along the optimal path by:
V ∗1 (t) = V1 ((n∗ (t)), r∗(t),Γ∗(t)) and V ∗2 (t) = V2 ((w∗ (t)), h∗(t), λ∗(t)). We know from the
equivalence of both programs that ∀t, V ∗1 (t) = V ∗2 (t). It follows from Torricelli’s formula
(1) and the usual property of the co-states that:

Γ∗(t) =
∂V ∗1
∂r

=
∂V ∗2
∂h

∂h

∂r
= λ∗(t)

(
r∗(t)

k2g

)
= λ∗(t)

(√
2gh∗(t)

kg

)
(14)

In other words, we can get the shadow price of a unit of water naturally rising at the
surface from an artesian well by using the solution the program given by Eq. (13).

The current value Hamiltonian becomes:

H (w(t), h(t), λ(t)) =

∫ w(t)

0

P (ω)dω − c w(t)

k
√
2gh(t)

+
λ(t)

sAr
[(1− ρ))R− w(t)] (15)

where λ(t) is the current-value shadow price associated with the water table. We derive
the following first-order conditions:5

P (w) = c
k
√
2gh
C ′ +

λ

sAr
(16)

λ̇ = δλ− cwg

k
√
(2gh)3

(17)

Eq. (16) represents the usual optimality condition, which yields a marginal benefit in
each period equal to the total marginal costs, the sum of the marginal exploitation cost
and the water shadow price, λ

sAr
.6

Equation (17) describes the behavior of the shadow value. This equation shows that
the time evolution of the shadow price depends on the discount factor, and as usually in the
literature on unconfined aquifer, it depends on the marginal exploitation cost. Actually

5We remove the time argument for a simpler reading.
6Remember that λ measures the shadow price of one additional drop of water in the ground, and λ

sAr
is consequently the shadow value of a marginal water table elevation in the unconfined part of the aquifer.

10



a stock-dependent recharge impacts the value of the resource, since current exploitation
of the confined aquifer affects the water table in the outcrop area, which in turn affects
pressure, and consequently future flowing.

The analysis of these conditions will allow us to characterize the optimal pathes, as it
is summarized in Proposition 2:
XXXXXXXXXAVOIRAVEC LANOUVELLE PREUVEXXXXXXXXXXXXXXXX

Proposition 2. Any optimal water consumption path, w̃(t) and water table path, h̃(t),
satisfy the optimal first conditions (16) and (17), with the dynamics (2).
Moreover under the usual transversality condition, lim

T→∞
e−δTλ(T ) = 0, the shadow

price λ(t) is positive and if we assume that the elasticity of the marginal exploitation cost
is larger than one, the suffi cient Mangasarian conditions are satisfied.

Proposition 2 interestingly proves that the (current-value) shadow value of water head
is positive at any period of time. Moreover, under a quite standard assumption on the
elasticity of the marginal cost function, we prove that the optimal control (13) satisfies
the suffi cient Mangasarian conditions.

5. Sustainable artesian water exploitation

We can now investigate the sustainable management of artesian aquifer by character-
izing the optimal steady state, i.e. by setting ḣ = λ̇ = 0. Indeed, in the steady state, we
characterize the highest rate of exploitation without depleting the aquifer, or rather with-
out reducing to zero water pressure in the long run. From equation (2), we can directly
derive the steady state level of global water consumption:

W = (1− ρ)R (18)

This exactly corresponds to the actual recharge.

Using equation (17), we obtain the steady state for the shadow value of water:

λ(h∗) =
cg (1− ρ)R

δk
√

(2gh∗)3
(19)

Then, using the Toricceli formula (1), we can respectively derive the long run maximum
water yield of a well:

r(h∗) = k
√

2gh∗ (20)

and the shadow value of the pressure:

Γ(h∗) =
c (1− ρ)R

2δgk2h∗
(21)
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All these steady state values depend on the long run level of water head in the first
part of the aquifer, h∗. On the basis of previous observations and using equation (16), we
get the condition required for the level of water table at the steady state:

P [(1− ρ)R] =
c

k
√

2gh∗

(
1 +

(1− ρ)R

2δh∗sAr

)
(22)

Hence, we can investigate the existence of a steady state based on this single condition,
and examine the stability properties. All the results are introduced in the Proposition
below.
XXXXXXXXXXXXXXXXXXXXXXXX

Proposition 3. There exists a unique steady state which satisfies local saddle point sta-
bility.

We can now analyze the long run impact of variations in parameters of the model
on water yield, and water consumption. More precisely, we want to study the effect of
hydrological parameters, {Ar, R,m},7 and the economic parameters, {k, δ}. Moreover,
since all variables depend on the water table equilibrium, we easily guess the existence of
two effects: a direct effect from variations of parameters, and an indirect effect, because
variations in one parameter will also affect the water table level, which will, in turn, impact
the variable of interest. Consequently, we will first apply the implicit function theorem
on equation (22) to deduce the impact of a change in a parameter θ = {Ar, R,m, k, δ} on
the long run level of the water table. Let us write equation (22) as follows:

φ (h; k,Ar, R,m, δ) ≡ P ((1− ρ(h))R)− 1

k
√

2gh
C ′
(
(1−ρ(h))R
mk
√
2gh

)(
1 + (1−ρ(h))R

2h(δsAr+ρ′(h)R)

)
= 0

(23)
such that, we have:

dh

dθ
= −

∂φ
∂θ
∂φ
∂h

We can prove that ∂φ
∂h
> 0, therefore we get that:8

sign

{
dh

dθ

}
= −sign

{
∂φ

∂θ

}
We easily observe that all parameters, except the natural recharge R, affect the long run
costs only. This specifically modifies the incentives to exploit artesian water by affecting

7We do not analyze the impact of the storativity parameter, s, since the effect of this parameter is
similar to the effect of the associated parameter Ar.

8All computations are presented in appendix.
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the full marginal cost, i.e. the sum of the marginal exploitation cost, and the marginal
user cost. Typically, the two parameters associated with exploitation, that is {m, k},
affect both parts of the full marginal cost. First, we can notice that a higher number
of exploitation areas, m, is equivalent in this modeling to lower water production per
area in the long run, which consequently drive to decrease marginal cost of exploitation.
However, for the optimality condition (22) to hold in the long run, the water table level
must decrease. Indeed, a fall in water table means that the actual recharge, (1− ρ(h))R,
increases, which in turn implies that the inverse water demand declines. A lower water
table will also modifies marginal cost, but the overall impact leads to a decreasing water
table level in the long run. Similarly, a larger diameter of the drill hole, k, is equivalent to
a decrease in the number of wells in the long run, which decreases marginal exploitation
cost. Consequently, a larger drill hole leads to a decline in the long-run water table level.
Second, the hydrogeological parameter, Ar, and the discount rate, δ, are the two

parameters affecting the time variation of the shadow value of the resource (see Eq. (17),
and thus they impact its long run value. Basically, a larger recharge area, Ar, gives
a greater incitation to exploit water, because of a lower future value of the resource.
Likewise, the higher the discount rate, the lower the present value of the future benefit.
Both parameters therefore lead to a lower water table level in the long run.
Finally, an increased potential recharge, R, impacts simultaneously water demand,

instantaneous exploitation cost, and the long-run social cost. Actually, an increase in
parameter R allows more water to infiltrate the aquifer, which consequently decreases
water price. Intuitively, at the steady state, the higher the inflows, the higher the outflows
of the system. This thus drives to increase marginal costs. The overall effect on demand
and costs decrease the incitation to exploit artesian groundwater, and thus leads to observe
a higher water table in the long run.
Table 2 summarizes the result of the comparative statics.

Table 2: Impact on the long run water table

Parameters Effect
Number of patches (m) −
Diameter of the drill hole(k) −
Recharge area (Ar) −
Discount rate (δ) −
Recharge (R) +

Let us now analysis the effect of variations in a parameter, θ = {m, k, δ, Ar, R}, on the
long run water consumption, W (h∗), the long run water yield, r(h∗), and the number of
wells per area, n(h∗). For all parameters, except the potential recharge, R, it is a matter
of fact that there is no direct effect on water consumption, and the impact exclusively
depends on the effect of variations in the water table level. Specifically, the impact only
depends on marginal variations of the net recharge because of changes in the water table
level. From Table 2, we know that the higher one of these parameters θ = {m, k, δ, Ar},
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the lower the water table level, and consequently the higher the net recharge. At the
steady state, this thus results in a higher water consumption. The effect of variations in
the potential recharge, R, sounds more ambiguous since it results from the combination
of a positive direct effect, and a negative indirect effect, which both alter the net recharge.
Indeed, a higher potential recharge drives to a decrease in the infiltration rate, since the
water table level is increased, but also contribute to increase the net recharge. However,
we can observe that some of effects offset each other in terms of their overall effect on
the water demand, and the marginal production costs, such that, at the end, a higher
potential recharge positively affects water consumption.
We can make similar observations concerning the analysis of changes in the long run

water yield. Once again, all parameters, except the diameter of the drill hole, k, have no
direct effect, and variations result from the impact of these parameters on the water table
level. More precisely, an increase (resp. a decrease) in the water table level contributes
to an increase (resp. a fall) in the amount of water flowing out of a well. To this end,
an increase in one of these parameters, θ = {m, δ,Ar}, leads to decrease water yield,
while a higher potential recharge, R, boosts water yield at the surface. Finally, a single
parameter has an a priori ambiguous impact: a larger drill hole results in a positive direct
impact, and a negative indirect impact, because of an abatement of the water table level.
However, both effects alter the cost structure, and the impact of these opposite variations
offset such that we observe a positive overall effect. Consequently an increased diameter
of the drill hole drives to a higher long run water yield.
The analysis of impacts on the number of wells per areas is a little more tricky.

Remember that n(h∗) = W (h∗)
mr(h∗) . Variations in the number of wells will thus depend

on simultaneous changes in water consumption, and in water yield, and, for the single
parameter m, it will also depend on a direct effect. For the two parameters θ = {δ, Ar},
it is quite straightforward, since we observe an increase in water consumption along with
a decline in water yield in the long run. This thus results in a higher number of wells per
area in order to increase water supply to satisfy water demand. Changes in the potential
recharge, R, or in the diameter of the drill hole, k, leads to observe a same mechanism:
both parameters positively affect water consumption, and water yield, but the overall
effect is positive. This thus means that the impact on water consumption is higher than
the impact on water yield. Finally, we observe a lower number of wells per area with
respect to a higher number of exploitation areas, m. This means that the contribution of
the direct effect of an increase in the parameter m is higher than the impact of changes
in water consumption and water yield. Table 3 summarizes the results:

6. The nature of the overextraction

XXX

7. Concluding remarks

XXX
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Table 3: Variations of water consumption, water yield, and the number of wells

Parameters Impact on water Impact on water Impact on the number
consumption (W ) yield (r) of wells (n)

Number of patches (m) + - -
Diameter of the drill hole (k) + + +
Recharge area (Ar) + - +
Discount rate (δ) + - +
Recharge (R) + + +
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A. Proof of proposition XXX

The dynamics is given by: (dans le texte) ṅ(t) = α
(
P
(
n(t)k

√
2gh(t)

)
k
√
2gh(t)− c

)
ḣ(t) = 1

sAr

(
(1− ρ)R− n(t)k

√
2gh(t)

) (24)

(i) Local stability
From Eq.(24), observe that the linear approximation of these dynamics arround the steady state is

given by:

(
ṅ

ḣ

)
=

 αP ′ (wm) k22ghm α
(
P ′ (wm)nmk2g + P (wm) k

√
g (2hm)

−1/2
)

−k
√
2ghm

sAr
− 1
sAr

(
nmk
√
g (2hm)

−1/2
) 

︸ ︷︷ ︸
=Dm

(
ṅ− nm
ḣ− hm

)
(25)

Under our assumption, it is immediate that:

trace(Dm) = αP ′ (wm) k22ghm − 1

sAr

(
nmk
√
g (2hm)

−1/2
)
< 0 (26)

Moreover, after some computations:

det(Dm) =
αP (wm) k2g

sAr
> 0 (27)

We can therefore conclude that our dynamical system is locally assymptotically stable.

(ii) Comparative statics at the steady state
Note that (texte)

hm = 1
2g

(
c

kP ((1−ρ)R)

)2
, wm = (1− ρ)R,

rm = k
√
2gh∗ = c

P ((1−ρ)R) ,

nm =
wm

rm
=
1

c
(1− ρ)RP ((1− ρ)R) = wmP (wm)

c

From Eq.It follows that :
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∂c ∂k ∂R ∂ρ

∂hm c
g

(
1

kP (wm)

)2
> 0 − 1

gk3

(
c

P (wm)

)2
< 0 − (

c
k )

2
P ′(wm)(1−ρ)

g(P ((wm))3
> 0

( ck )
2
RP ′(wm)

g(P (wm))3
< 0

∂wm 0 0 (1− ρ) > 0 −R < 0

∂rm 1
P (wm) > 0 0 − c(1−ρ)P

′(wm)

(P ((1−ρ)R))2 > 0 cRP ′((1−ρ)R)
(P (wm))2

< 0

∂nm −w
mP (wm)
c2 < 0 0

(1−ρ)(P (wm)+wmP ′(wm))
c

−R(P (wm)+wmP ′(wm))
c

Finally remark that ∂n
m

∂R Q 0⇔ εP (w
m) Q −1 and ∂nm

∂R Q 0⇔ εP (w
m) R −1

B. Proof of Proposition 3

(i) Existence and uniqueness of the steady state
By using condition (22), let us introduce the function:

φ (h;Ar, R, ρ, k, c, δ) ≡ P ((1− ρ)R)− c
k
√
2gh

(
1 + (1−ρ)R

2hδsAr

)
(28)

which takes as parameter any θ ∈ {Ar, R, ρ, k, c, δ}. Let us first observe that:

• lim
h→0

φ (h) = P ((1− ρ)R)︸ ︷︷ ︸
finite

−
[
lim
h→0

c
k
√
2gh

]
︸ ︷︷ ︸

=+∞

(
1 + lim

h→0
(1−ρ)R
2hδsAr

)
︸ ︷︷ ︸

>1

= −∞

• limh→hmax φ (h) = P ((1− ρ)R)− c
k
√
2ghmax

(
1 + (1−ρ)R

2hδsAr

)
> P ((1− ρ)R)− c

k
√
2ghmax

> 0 since we

have assumed hmax is high enough (see XXX)

This means that there exists at least on ho which solves φ (h) = 0. Moreover, since

∂φ

∂h
= c

k
√
g
√
(2h)3

(
1 + 3(1−ρ)R

2hδsAr

)
> 0 (29)

we can even conclude that this steady state is unique.

(ii) Local saddle point stability
In the following, the index t will be omitted to spear notation. Let us first remember that the

dynamics is given by:{
λ̇ = δλ− ∂hH (w, h, λ)|w=w(h,λ)
ḣ = ∂λH (w, h, λ)|w=w(h,λ)

with w(h, λ) solution to ∂wH (w, h, λ) = 0 (30)

It follows that the dynamics around the steady state can be approximated by:

(
λ̇

ḣ

)
=

 δ −
(
∂2h,λH−∂2h,wH

∂2w,λH
∂2w,wH

)
−
(
∂2h,hH−∂2h,wH

∂2w,hH
∂2w,wH

)
−∂2λ,wH

∂2w,λH
∂2w,wH

∂2λ,hH−∂2λ,wH
∂2w,hH
∂2w,wH

∣∣∣∣∣∣
(wo,ho,λo)︸ ︷︷ ︸

=Do

(
λ̇− λopt
ḣ− hopt

)
(31)

with: {
∂2h,λH = 0 ∂2h,wH = c

k
√
g (2h)

− 3
2 ∂2h,hH = − 3cw

k
√
g (2h)

− 5
2

∂2λ,wH = − 1
sAr

∂2w,wH =P ′(w) ∂2λ,λH = 0
(32)
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By substitution:

Do =

 δ − c(2h)−
3
2

sArk
√
gP ′(w)

3cw(2h)−
5
2

k
√
g +

(
c(2h)−

3
2

k
√
g

)2
1

P ′(w)

−
(

1
sAr

)2
1

P ′(w)
c(2h)−

3
2

sArk
√
gP ′(w)

 (33)

It follow that trace(Do) = δ > 0 and, after some simplifications, that

det (Do) =

(
c(2h)−

3
2

sArk
√
g

)(
δ +

3w

2sArh

)
1

P ′(w)
< 0 (34)

Finally, since trace(Do) > 0 and det (Do) < 0, we know that our steady state is a locally stable saddle
point.

Sensitivity analysis at the optimal steady state values
We now compute the comparative statics on steady state value. let us remember our assumptions,

we will use:
P ((1− ρ)R)− c

k
√
2gh

(
1 + (1−ρ)R

2hδsAr

)

P ′ (w) < 0, : ρ(h) < 1, :: ρ′(h) > 0

Impact on the water table level

For all θ ∈ {Ar, R, ρ, k, c, δ}, let us study the sign of ∂h∂θ = −
∂φ
∂θ�

∂φ
∂h where φ is given by Eq. (23).

First, we know from Eq.(29) that ∂φ∂h > 0. We can say that sign{
∂h
∂θ } = −sign{

∂φ
∂θ }. Let us compute

∂φ
∂θ

for all θ ∈ {Ar, R, ρ, k, c, δ}:

∂φ
∂Ar

= c
k
√
2gh

(
(1−ρ)R
2hδs(Ar)

2

)
> 0, hence

∂hopt

∂Ar
< 0 (35)

∂φ
∂R = (1− ρ)P

′ (w)− c
k
√
2gh

(
(1−ρ)
2hδsAr

)
< 0, hence

∂hopt

∂R
> 0 (36)

∂φ
∂ρ = −RP

′ (w) + c
k
√
2gh

(
R

2hδsAr

)
> 0, hence

∂hopt

∂ρ
< 0 (37)

∂φ
∂k =

c
k2
√
2gh

(
1 + (1−ρ)R

2hδsAr

)
> 0, hence

∂hopt

∂k
< 0 (38)

∂φ
∂c = −

1
k
√
2gh

(
1 + (1−ρ)R

2hδsAr

)
< 0, hence

∂hopt

∂c
> 0 (39)

∂φ
∂δ =

c
k
√
2gh

(
(1−ρ)R
2hδ2sAr

)
> 0, hence

∂hopt

∂δ
< 0 (40)

Impact on water consumption
At the steady state wopt = (1− ρ)R, thus all θ 6= R, ρ ∂wopt

∂θ = 0. Moreover, ∂w
opt

∂R = 1 − ρ > 0 and
∂wopt

∂ρ = −R < 0

Impact on the yield of an artesian well

At the steady state r(hopt) = k
√
2ghopt, we observe, for all θ 6= k, that ∂ropt

∂θ = kg√
2ghopt

· ∂hopt∂θ .

It follows, respectively by equations Eq.(35), Eq.(37), Eq. (40) and by Eq.(36), Eq.(39), that ∂ropt

∂Ar
,

∂ropt

∂ρ
∂ropt

∂δ < 0 and ∂ropt

∂R , ∂r
opt

∂c > 0.
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It remains to study ∂ropt

∂k = kg√
2ghopt

· ∂hopt∂k +
√
2ghopt. Moreover ∂hopt

∂k = −∂φ∂k�
∂φ
∂h and

∂φ
∂h > 0 (see

Eq.(29)). We can therefore say that:

sign

{
∂ropt

∂k

}
= sign

{
k
∂hopt

∂k
+ 2hopt

}
= sign

−k
∂φ

∂k
+ 2hopt

∂φ

∂h︸ ︷︷ ︸
=D


By using Eqs.(29) and (38), we obtain:

D = − c
k
√
2gh

(
1 + (1−ρ)R

2hδsAr

)
+ c

k
√
2gh

(
1 + 3(1−ρ)R

2hδsAr

)
= c

k
√
2gh

2(1−ρ)R
2hδsAr

> 0

Impact on number of artesian wells
At the steady state nopt = (1−ρ)R

k
√
2ghopt

, thus ∀θ 6= R, ρ, k, ∂nopt

∂θ = − (1−ρ)Rk
√
g (2hopt)

−3/2 ∂hopt
∂θ it follows,

respectively by equations Eq.(35), Eq. (40) and Eq.(39), that ∂n
opt

∂Ar
, ∂n

opt

∂δ > 0 and ∂nopt

∂c < 0. Let us now

concentrate on ∂nopt

∂k . By computation:

∂nopt

∂k
= − (1−ρ)R

k2
√
2gh
− (1−ρ)R

k
√
g

(
2hopt

)−3/2 ∂hopt
∂k

It follows that:
sign

(
∂nopt

∂k

)
= −sign

(
2h
k +

∂hopt

∂k

)
= −sign

(
2h
k
∂φ
∂h −

∂φ
∂k

)
Moreover by Eqs.(29) and (38)

2h
k
∂φ
∂h −

∂φ
∂k =

c
k2
√
2gh

(
1 + 3(1−ρ)R

2hδsAr

)
− c

k2
√
2gh

(
1 + (1−ρ)R

2hδsAr

)
= c

k2
√
2gh

(
(1−ρ)R
hδsAr

)
> 0

We can therefore say that ∂nopt

∂k < 0. Let us now move to the study of∂n
opt

∂θ for θ = R, ρ. Since these
two parameters always appear as w0 = (1− ρ)R we can say that:

sign
(
∂nopt

∂θ

)
= sign

(
∂nopt

∂wopt

)
sign

(
∂wopt

∂θ

)
= sign

(
∂wopt

∂θ

)
sign

(
2hopt − wopt ∂hopt∂wopt

)
= sign

(
∂wopt

∂θ

)
sign

(
2hopt ∂φ∂h + w

opt ∂φ
∂wopt

)
Moreover by Eqs.(28) and (29), we obtain:

1
2hopt

∂φ
∂h + w

opt ∂φ
∂wopt =

c

k
√
2ghopt

(
1 + 3wopt

2hoptδsAr

)
+ woptP ′(wopt)− c

k
√
2ghopt

wopt

2hoptδsAr

= c

k
√
2ghopt

(
1 + wopt

hoptδsAr

)
+ woptP ′(wopt)

By using again Eq.(28)

1
2hopt

∂φ
∂h + w

opt ∂φ
∂wopt = P (wopt) + c

k
√
2ghopt

(
1 + wopt

2hoptδsAr

)
+ woptP ′(wopt)

= P (wopt) (1 + εw(P )) +
c

k
√
2ghopt

(
1 + wopt

2hoptδsAr

)
It follows that if the elasticity of the demand εw(P ) ≥ −1, we can assert that 1

2hopt
∂φ
∂h + wopt ∂φ

∂wopt > 0

which implies that ∂n
opt

∂R > 0 and ∂nopt

∂R < 0.
This last condition is however only a suffi cient condition. For εw(P ) < −1, it is impossible to

conclude. This can be easely illutrated by the following example. Let us take P (w) = w−a with α > 1,
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and let us choose the parameters such that (1− ρ)R = 1 and c
k
√
g =

δsA
δsA+1 . Under these assumptions,

we know from Eq.(28), that hopt solves

1− c
k
√
g (2h)

− 1
2 − c

k
√
g

1
δsAr

(2h)−
3
2 = 1− δsA

δsA+1 (2h)
− 1
2 − 1

δsA+1 (2h)
− 3
2 = 0 (41)

and it is easy to check that hopt = 1
2 solves Eq.(41). It follow that in this case

1
2hopt

∂φ
∂h + w

opt ∂φ
∂wopt = 1− α+

c
k
√
g

(
1 + 1

δsAr

)
= 2− α

This means in this example that ∂nopt

∂R and ∂nopt

∂R change their sign depending whenever the elasticity of
the demand εw(P ) = −α Q −2

P ((1− ρ)R)− c
k
√
2gh

(
1 + (1−ρ)R

2hδsAr

)

∂nopt

∂R
=
(1− ρ)
k
√
2gh

[
c

k
√
g (2hopt)

3/2

(
1 +

3(1− ρ)R
2hδsAr

)]
+

(1− ρ)R
k
√
g (2hopt)

3/2

[
(1− ρ)P ′(w)− c(1− ρ)

k
√
2gh2hδsAr

]
OK

=
(1− ρ)

k
√
g (2hopt)

3/2

(
P (w) +

deuxc(1− ρ)R
k
√
2gh2hδsAr

)
+

(1− ρ)R
k
√
g (2hopt)

3/2

(
(1− ρ)P ′(w)− c(1− ρ)

k
√
2gh2hδsAr

)
=

(1− ρ)
k
√
g (2hopt)

3/2
(P (w) + (1− ρ)P ′(w)R)

∂nopt

∂ρ
= − ρR

k
√
2gh

[
c

k
√
g (2hopt)

3/2

(
1 +

3(1− ρ)R
2hδsAr

)]
− (1− ρ)R
k
√
g (2hopt)

3/2

[
−P ′(w) + cR

k
√
2gh2hδsAr

]
=

ρR

k
√
2gh

[
P (w) +

2c(1− ρ)R
k
√
2gh2hδsAr

]
− (1− ρ)R
k
√
g (2hopt)

3/2

[
−P ′(w) + cR

k
√
2gh2hδsAr

]
=

R

k
√
g (2hopt)

3/2
[−ρP (w)− (1− ρ)P ′(w)]− R2c (1− ρ) (1 + 2ρ)

k2g4h2δsAr

B.1. Study of the difference
Let ` be the long term proportion of water which is lost with respect to the optimal management

(mal dit)

` (Ar, R, ρ, k, c, δ) = 1−
hm (Ar, R, ρ, k, c, δ)

ho (R, ρ, k, c)

where hm (Ar, R, ρ, k, c, δ) and ho (R, ρ, k, c) respectively solve XXXX. If we denote by

xo = (2ho)
−1/2 and xm = (2hm)−1/2 =

√
g

(
kP ((1− ρ)R)

c

)
this quantity becomes ` = 1 −

(
xo

xm

)2
. Moreover if we set w = (1− ρ)R, κ = c

k
√
g and a = δsAr , we

know from Eq. XX that xo solves
P (w)− κx− κw

a x
3 = 0
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This implies, since xm = P (w)
κ , that λ = xo

xm solves

P (w)− P (w)λ− w(P (w))3

aκ2 λ3 = 0

⇐⇒ λ3 +K (λ− 1) = 0 with K = aκ2

w(P (w))2
and λ ∈ [0, 1]

Moreover it is immediate by the implicit function theorem that

dλ

dK
= − λ− 1

3λ2 +K
> 0

we can therefore assert that ∀θ ∈ {Ar, R, ρ, k, c, δ},

∂`

∂θ
= −2ρ dλ

dK

∂K

∂θ
⇒ sign

(
∂`

∂θ

)
= −sign

(
∂K

∂θ

)
Since ∂K

∂a =
κ2

w(P (w))2
> 0 with a = δsAr we have that ∂`

∂δ ,
∂`
∂Ar

< 0. Moreover ∂K
∂κ =

2aκ
w(P (w))2

> 0 with

a = c
k
√
g , it follows that

∂r
∂c < 0 and

∂r
∂k > 0. Finally note that

∂K

∂w
= − aκ2

w2(P (w))3
(P (w) + 2wP ′(w)) = − aκ2P (w)

w2(P (w))3
(1 + 2eP (w))

and since w = (1− ρ)R, we can conclude that ∂`
∂ρ R 0 and

∂`
∂R Q 0 if and only if eP (w) Q −

1
2 .

Cadeau
If we denote by p proportion of yield that are lost par wells with respect to the steady state. We can

say that:

p = 1− rm

r0
= 1− k

√
2ghm

k
√
2gh0

= 1− λ

If follows that ∀θ ∈ {Ar, R, ρ, k, c, δ}, sign
(
∂λ
∂θ

)
= sign

(
∂`
∂θ

)
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