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Abstract

Article 6.4 of the Paris Agreement establishes a new market mechanism, the design of
which still needs to be defined. In this context, we conduct an empirical analysis of the
impact of international carbon credits on regular emissions trading schemes, in particular
on the returns and volatilities. We take advantage of the European experience with ac-
cepting Certified Emissions Reductions (CER) for compliance in the second phase of the
EU ETS. Our causality analysis uses vector-autoregressive models on the prices of Euro-
pean allowances (EUA) and CER. We also examine the dynamic conditional correlation
between the risks of the carbon permits. We find an absence of cointegration between the
two price series. This is explained by the difference in their long-term dynamics. The
causality analysis shows a unidirectional link from EUA to CER in the short-term: the
EUA daily price variations influence the CER returns, but the latter have no impact on
the former. 60% of the CER volatility is explained by the EUA volatilty and a shock in the
EUA price is always transmitted to the CER price. On the opposite, we find no effect of
the CER price variations on the EUA price. The dynamic conditional correlation between
the EUA and CER price risks is estimated to be around 0.8, which is comparable to what
is observed between commodities that have a high degree of substitutability. In order to
ensure the good functioning of these policy instruments, we suggest limiting the volume of
international credits that can be issued annually.

Keywords: Emissions trading; European allowances; international credits; causality anal-
ysis; dynamic conditional correlation models.

1 Introduction

At the Paris Conference of the Parties (COP) organized within the United Nations Framework Conven-
tion on climate change (UNFCCC), Parties agreed upon principles for voluntary market mechanisms.
This includes Article 6.2 on internationally transferred mitigation outcomes as well as Article 6.4 which
establishes a mechanism that should allow activities to contribute to reductions of emissions in a host
Party while being taken into acccount by another Party to fulfill its nationally determined contribu-
tions. At the time this paper is written, the exact design of these mechanisms is still being negotiated.
No agreement was reached on this point at COP24, deferring the whole to COP25.

In this context, economic analyses of the impacts to expect from such interactions could help designing
the new mechanisms. Modeling studies focused on long-term general equilibrium effects have been con-
ducted to assess the effects of sectoral carbon market coupling. Hamdi-Cherif et al. (2010) simulated
sectoral trading if it were to be used between all industrialized and developing countries. Gavard et

al. (2011a) examined sectoral trading on a hypothetical US-China carbon scheme coupling using the
Emission Prediction and Policy Analysis (EPPA) model. The case of coupling between the EU ETS
and carbon markets covering the electricity sectors of China, India, Brazil and Mexico was considered
in Gavard et al. (2011b). These papers quantify the impacts of such mechanisms on total and sectoral
emissions, carbon leakages and financial transfers between the countries involved, over a time period
of several decades. They have shown that, in the absence of a limit on the amount of permits that
can be traded, such mechanisms would result in carbon price equalisation between the juridictions and
might result in a welfare loss for the developing country involved. If a limit is set, the latter effect can
be mitigated.

Much of the existing econometric litterature on the price interactions between regular carbon markets
and international offsets has focused on the spread between the prices of European allowances (EUA)
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and Certified Emission Reductions (CER) generated under the Clean Development Mechanism (CDM).
Nazifi (2013), Mizrach (2012), Mansanet-Bataller et al. (2011) and Chevallier (2010) agree that the
price of international credits has been largely influenced by the European carbon market, due to the
fact that the latter has been the largest in the world to accept international credits for compliance
(Ellerman, Convery, and de Perthuis, 2010; Mansanet-Bataller et al., 2011). The impact of these
credits on the regular schemes still needs to be quantified (Trotignon, 2012).

The objective of this paper is to empirically analyze the short-term impacts of international carbon
credits on regular carbon markets. In the case of an emissions trading scheme, the supply of permits is
fixed, set by a cap that is decided at a political level, while the demand for permits is function of the
general economic activity and energy prices and might be influence by the acceptance of international
carbon credits. In contrast, for the latter, the supply is influenced by energy prices as well as investment
support and the demand is function of the regular ETS.

The European Union Emissions Trading Scheme (EU ETS) provides a good study case: it is the largest
carbon market in the world and the largest to have accepted international credits for compliance. Each
year, installations covered by the European trading scheme have to surrender carbon allowances in a
volume equivalent to the volume of their verified emissions that year. Besides European allowances
(EUA), Kyoto Protocol credits are also accepted for compliance under a specific limit. In Phase II
of the scheme, this limit was 13% of the amount of EUA issued under the European cap. EUA are
issued at the European level, their volume is defined by the European cap and they can only be used
for compliance in the European carbon market.1 CER can be traded worldwide and there is no limit
on the amount of CER issued by the CDM board annually.

Our causality analysis employs vector autoregressive models (VAR) on EUA and CER price series
during the second phase of the EU ETS. It comprises an impulse response analysis and a variance
decomposition. It is complemented by an estimation of the dynamic conditional correlation between
the risks embodied in the two price series.

Section 2 describes the data used for this work. Section 3 presents the model used for the causality
analysis and the results. Section 4 covers the estimation of the dynamic conditional correlation between
EUA and CER price risks. Section 5 concludes.

2 Data

We use CER and EUA time series from Phase II of the EU ETS. Given the fact that the volume of
EUA and CER futures contracts is much larger than the volume of spot contracts, we use futures price
series. They are constructed by rolling over futures contracts after their expiration date. The source
for EUA and CER price series is the Intercontinental Exchange (ICE) database. We use data from
February 26th, 2008 to November 12th, 2012 for EUA and data from March 14th 2008 to November
12th 2012 for CER. Natural gas and coal prices2 are taken from the ICE. We use month-ahead contract
price series. Exchange rates from the European Central Bank are used to convert the natural gas price
from £ to e and the coal price from $ to e. The Euro Stoxx 50 Index is used to represent the economic
activity.3

1In Phase II of the EU ETS, EUA were given to installations covered by the scheme (grandfathering). Auctions were
only introduced at the very end of the year 2012. This latter time period is not included in our analysis.

2The coal price we use is the API2 CIF (Cost, Insurance, Freight) with delivery in ARA (Amsterdam, Rotterdam
and Antwerp).

3There are several reasons for the use of this proxy. First, daily data are available while industrial production is
only reported monthly. Daily data on the aggregate European electricity production or consumption are hard to find.
The national level data that are available present some seasonality and do not well reflect the changes in the economic
activity. Finally, other authors also use this proxy to analyse the European trading scheme. That is, for example, the
case in Bredin and Muckley (2011), and Creti et al. (2012).
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Figure 1 presents the EUA and CER futures price series. As identified by the Clemente Montanès and
Reyes test in Gavard and Kirat (2018) and reported in the appendix, the carbon price series present
two breaks in level. The first one is related to the economic and financial crisis in 2008 while the
second one corresponds to a recession in Europe in the third trimester of 2011. In addition, for the
international credits, we observe a break in trend from November 2011 onwards. As early as January
2009, the European Commission announced that there would be restrictions on the type of credits
accepted for compliance in the European carbon market, but the list of credit types that would be
recognized or not was only published in January 2011. Visually the break in trend seems to start
then, but the test detects the break only at the end of 2011. Two additional explanations remain. On
the one hand, there was a limit on the volume of credits that each installation covered by the scheme
could use for compliance. As installations reached their respective limits, the demand for these carbon
permits gradually decreased. On the other hand, Gavard and Kirat (2018) suggest that increasing
global fossil energy prices might have had an impact of the development of CDM projects and, as a
consequence, on the supply of credits to the market. This supply effect in addition to the reduction in
demand would explain the drop in the CER price in 2012.

0
1

2
3

4

1 July 2008 1 July 2009 1 July 2010 1 July 2011 1 July 2012
Date

log(EUA future price) log(CER future price)

Figure 1: Logarithmic EUA and CER futures prices.

Figure 2 shows the daily variations of the EUA and CER futures price series. The variations for the
other price series are in appendix, as well as the summary statistics of the returns are in the appendix
(see Table 4). As described in Gavard and Kirat (2018), the EUA and CER returns display patterns
of volatility clustering. This is consistent with previous observations reported in the literature, e.g. by
Medina and Pardo (2012) or Paolella and Taschini (2008). We note that the volatility is higher after
each of the two breaks described above. The economic recessions at the end of 2008 and 2011 induced
uncertainty and a higher carbon price volatility.

3 Causality analysis

In this section, we perform the causality analysis between the EUA and CER price series using vector
autoregressive (VAR) models. Given the impact of energy prices and the economic activity on the
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Figure 2: (a) EUA and (b) CER price variations.

5



carbon price, we conducted this analysis with three different specifications, one with the energy prices
and the economic activity as endogenous variables, one with them as exogenous variables, and one
without them. We found very close results for the three specifications. Here, we report the results for
the simplest one, that is the model including the EUA and CER prices only.

Before conducting the estimation with the VAR model, we test the existence of a long-term relationship
between the two price series. Several authors have already noticed the absence of a cointegration
relationship between EUA and CER price series: Nazifi (2013) for the time period from March 2008 to
May 2009, Mizrach (2012) for the time period from June 2007 to April 2010.4 The observation of the
EUA and CER prices over time (Figure 1) already suggests the absence of cointegration. Even if EUA
and CER prices have common drivers and might influence one another, the Engle Granger test, which
takes account of breaks in the series, confirms the absence of a long-term relationship between the
EUA and CER prices on the time period from February 2008 to November 2011. The results reported
in Table 1 show that we cannot reject the null hypothesis of no cointegration. We explain this by
the fact that even if EUA and CER prices are driven by similar factors, their long-term dynamics
are different (Gavard and Kirat, 2018). The EUA price is demand-driven; its supply is set by a cap;
the price variation are explained by the change in demand for carbon permits. On the contrary, for
the CER price, the long-term dynamics seem to be influenced by a potential supply effect related to
investments in CDM projects.

Table 1: Results of the Engle-Granger cointegration test.

Null hypothesis Test statistic 1% Critical value 5% Critical value

PCER
and PEUA

are not cointegrated 3.801 -3.906 -3.341

Note: the null hypothesis of no cointegration is rejected if the test statistic is below the critical value.

Critical values are taken from MacKinnon (1990, 2010).

The causality relationship between the EUA and CER prices is tested with the following VAR model
with two lags.5







∆PEUA
t = α1 + β1∆PEUA

t−1
+ γ1∆PEUA

t−2
+ δ1∆PCER

t−1
+ λ1∆PCER

t−2
+ ε1t

∆PCER
t = α2 + β2∆PEUA

t−1
+ γ2∆PEUA

t−2
+ δ2∆PCER

t−1
+ λ2∆PCER

t−2
+ ε2t

where ∆PEUA
t and ∆PCER

t are respectively the price variations of EUA and CER in period t, and ε1t
and ε2t the error terms corresponding to each relationship.

The results of the Granger causality tests are presented in Table 2. We find that short-term variations in
the EUA price cause variations in the CER price, but that the opposite is not true. The null hypothesis
that variations in the price of EUA does not cause variations in the price of CER is rejected, while the
hypothesis that variations in the price of CER does not cause variations in the price of EUA is not.

In order to perform an impulse-response analysis, we use the Cholesky decomposition to orthogonalize
ε1 and ε2. The estimation of the VAR model is used to simulate a shock on the EUA price and look
at the impact on the CER price, and, symetrically, simulate a shock on the CER price and examine
the impact on the EUA price. Figures 3 and 4 show the results of the analysis. We observe that a
shock on the EUA price is immediately transmitted to the CER price. This effect is amortized in two
days and it disappears after four days. On the contrary, a shock on the CER price has no significant
impact on the EUA price.

4Mansanet-Bataller et al. (2011) and Chevallier (2010) find some cointegration between EUA and CER prices, but
Mizrah (2012) suggests that this is due to the fact that they use the Reuters index for the CER data and that this index
averages prices from different expiries.

5The number of lags is chosen according to the Akaike and Hannan-Quinn information criteria.
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Figure 3: Response in the variation of the logarithmic CER price to an impulse in the variation of the
logarithmic EUA price.
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Figure 4: Response in the variation of the logarithmic CER price to an impulse in the variation of the
logarithmic EUA price
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Table 2: Results of the Granger causality tests.

Null hypothesis LR statistic Granger causality test (Prob >χ2)

∆PEUA
does not Granger cause ∆PCER

17.171 0.000***

∆PCER
does not Granger cause ∆PEUA

4.5805 0.101

Note: *** and ** respectively refer to rejection of the null hypothesis at the 1% and 5% significance

levels.

We also proceed to the variance decomposition of the EUA and CER prices. This allows to assess
the share of the CER price volatility that is explained by the EUA price volatility and, symetrically,
the share of the EUA price volatility that is explained by the CER price volatility. The results are
presented in Table 3. We find that the EUA price volatility explains 60% of the CER price volatility,
while the CER price volatility has no impact on the EUA price volatility.

Table 3: Variance decomposition of the forecasted errors.

Variance decomposition of ∆PEUA Variance decomposition of ∆PCER

Period ∆PEUA ∆PCER ∆PEUA ∆PCER

1 100% 0% 61.96% 38.04%

2 99.68% 0.32% 60.31% 39.69%

3 99.66% 0.34% 60.39% 39.61%

4 99.65% 0.35% 60.42% 39.58%

5 99.65% 0.35% 60.42% 39.58%

6 99.65% 0.35% 60.42% 39.58%

7 99.65% 0.35% 60.42% 39.58%

8 99.65% 0.35% 60.42% 39.58%

All these results show a unidirectional influence of the EUA on the CER. There are three reasons for
this. First, the EUA market is much larger than the CER market: the number of EUA issued annually
(more than 2 billion in 2013) is in the same order of magnitude as the cumulative number of CER
generated (1.9 billion indicated on the CDM pipeline6 on January 29th, 2019). Second, the demand for
CER has come mainly from the EU ETS. Third, the volume of CER that could be used for compliance
in the EU ETS was limited to 13% of the overall cap in the second phase of the scheme.

4 Estimation of the correlation between the carbon permits

risks

Complementary to the causality analysis performed above, we estimate the correlation between the
EUA and CER price volatilities. We consider the interdependence between the risks embedded in the
EUA and CER prices and we model the conditional volatility of these carbon permit price variations
in a manner that allows for the existence of a time varying conditional correlation matrix. We specify
the following model with Dynamic Conditional Correlation (Engle, 2002; Engle and Sheppard, 2001)
DCCE(1,1) errors:

6Detailed information on CDM projects is provided by the Centre on Energy, Climate and Sustainable Development:
UNEP DTU CDM/JI Pipeline Analysis and Database (cdmpipeline.org).
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∆PEUA
t = α1 + β1∆PEUA

t−1
+ γ1∆PEUA

t−2
+ δ1∆PCER

t−1
+ λ1∆PCER

t−2
+ ε1t

∆PCER
t = α2 + β2∆PEUA

t−1
+ γ2∆PEUA

t−2
+ δ2∆PCER

t−1
+ λ2∆PCER

t−2
+ ε2t

(ε1t, ε2t)
T | Ωt  N(0, Ht) where Ωt is the available information at time t

(1)

The DCCE(1, 1) model is defined as:







Ht = DtRtDt

Dt = diag(
√
h11t,

√
h22t)

Rt = (diag Qt)
1/2 Qt (diag Qt)

−1/2

where the 2× 2 symmetric positive definite matrix Qt is given by:

Qt = (1− θ1 − θ2)Q+ θ1ut−1u
T
t−1

+ θ2Qt−1

Here u is the matrix of standardized residuals, Q is the 2× 2 unconditional variance matrix of ut, and
θ1 and θ2 are non-negative parameters satisfying θ1 + θ2 < 1. The DCC(1, 1) model can be estimated
either in one single step or in two steps.7 In the latter case, the conditional-mean equations and
the conditional variances of EUA and CER price variations are first estimated using a GARCH(1, 1)
specification corresponding to the VAR model. The standardized residuals are then used to model
the correlation in an autoregressive manner to obtain the time-varying conditional correlation matrix.
The conditional variance-covariance matrix Ht is the product of the diagonal matrix of the conditional
standard deviation Dt with the conditional correlation matrix Rt and the matrix Dt. The Rt =(

1 ρ12t

ρ21t 1

)

matrix reflects the instantaneous conditional correlation between EUA and CER price

variations. Figures 5 and 6 respectively represent the EUA and CER price volatilities and the dynamic
conditional correlation between them.

CER and EUA volatilities are very close until November 2011. Afterwards, the CER price volatility
is much higher, while its return remains lower than the EUA return. November 2011 also coincides
with the second break in the CER price series identified in section 2. This higher volatility reflects an
increased uncertainty, which may be related to the risk that the limit of offsets accepted for compliance
in the EU ETS is reached. This would be consistent with the indication by Ellerman et al. (2010)
that the price difference between EUA and CER is related to the risk of the CER not being accepted
in the European carbon market and to a delivery risk, mainly the risk of CER futures contracts not
being backed by already issued CER.

The estimation of the dynamic conditional correlation between the volatilities of the EUA and CER
prices shows it is positive and high. It varies between 0.41 and 0.92. Its mean is 0.81. For comparison,
Engle (2002) finds that the dynamic conditional correlation between the Dow Jones Industrial Average
and the NASDAQ Composite varies between 0.4 and 0.9 in the time period 1990-2000. Gupta and
West (2013) observe that the DCC between the prices of various types of coal imported to India is
close to 1, and Marzo and Zagaglia (2008) show that there is a DCC close to 0.8 between the prices
of crude oil and heating oil. The DCC observed here between the prices of CER and EUA is high
compared to what is seen for traditional financial products, it is rather in line with the DCC observed
between the prices of commodities that have some degree of substitutability.

7See the Appendix for more details regarding the model estimation.
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5 Conclusion

In the framework of the UNFCCC, Article 6.4 of the Paris Agreement establishes a mechanism that
allows reductions of emissions in a host Party to be taken into account by another Party to fulfill its
Nationally Determined Contributions. The institutional form this mechanism will take still needs to
be designed as the definition of the corresponding modalities and procedures has been postponed from
COP24 to COP25.

In this context, this paper conducts an empirical analysis that aims to shed light on the impact of
international credits on regular emissions trading schemes, in particular on the returns and volatilities
in the latter. It takes advantage of the European experience with accepting Certified Emissions Re-
ductions for compliance in the second phase of the EU-ETS. The causality analysis that is presented
employs vector-autoregressive models of the prices of EUA and CER. It allows quantifying the impact
of each carbon permit type on the other one and decomposing the corresponding volatilities. We finally
estimate the dynamic conditional correlation between the risks of the carbon permits.

We find no cointegration relationship between the EUA and CER prices. This is consistent with
previous literature results, including the observation by Gavard and Kirat (2018) that EUA and CER
price series are driven by different long-term dynamics. While the volume of EUA issued annually is
set by a cap and the price is hence demand-driven, the CER price might be influenced by a supply-
side effect related to investment in CDM projects. The restrictions on the use of CER credits in
the following time periods of the European scheme as well as the uncertainty regarding the question
whether the limit of CER accepted in the EU ETS would be reached are also likely to have contributed
to the downward trend in the CER price in 2012.

The VAR analysis shows a unidirectional causality link between EUA and CER in the short-term: the
EUA daily price variations influence the CER returns, but the latter have no impact on the former.
60% of the CER price volatility is explained by the EUA volatility, while the CER price volatility has
no effect on the EUA. Shocks in the EUA price are transmitted to the CER price, but the opposite is
not true. The direction of this causal relationship from the EUA to the CER price can be explained by
three factors. First, there is a major difference in market size between the two types of permits: the
number of EUA issued for a single year is in the same order of magnitude as the cumulative number of
credits that have been generated since the CDM started. Second, the main source of demand for CER
has been the EU ETS. Third, the volume of CER that could be used for compliance in the second
phase of the European carbon market was limited to 13% of the volume of EUA.

We observe that the EUA and CER volatilities are very close until November 2011. Afterwards,
the CER volatility is much higher and the CER price falls. This can be related to the uncertainty
mentioned above as well as the decision made at the the 17th COP in Durban to reform the CDM.
We find that the dynamic conditional correlation between the price risks of CER and EUA is around
0.8, which is higher than what is seen for traditional financial products. It is rather close to the DCC
observed between the prices of commodities that have some degree of substitutability.

In terms of policy implications, the absence of an influence of the CER price on the short-term variations
in the EU carbon market is rather positive. In this regard, setting a limit on the volume of international
credits that can be accepted in a regular ETS makes sense to ensure the effective functioning of the
latter as a policy instrument. On the other hand, such limits and restrictions might cause low prices
and high volatility of international carbon credits. This may undermine the interest of investors in
using such credits and, as a consequence, reduce the potential support for low-carbon projects in
developing countries. One idea that would be worth considering is to set a global limit on the volume
of international credits generated annually. Together with strict rules for issuing such permits, this
could help to maintain a higher price for these international credits and reduce the risk of issuing more
credits than the amount that can be accepted in the regular trading schemes.
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Appendices

A. Data description and tests

Descriptive statistics

Table 4: Descriptive statistics of the daily variations of the logarithmic price series

Variable Nb. of Obs. Mean St. Dev. Min. Max.

EUA 1195 -0.00075 0.024 -0.093 0.193

CER 1182 -0.00234 0.031 -0.179 0.195

Gas 1195 0.0001495 0.03297 -0.1220 0.3600

Coal 1195 -0.0002768 0.02031 -0.2248 0.1631

Eurex 1195 -0.0003692 0.01823 -0.08208 0.1044
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Figure 7: Energy price returns (first difference of logarithmic prices)
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Figure 8: Return of the Euro Stoxx 50 Index
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Clemente Montañès and Reyes test

In the Clemente Montañès and Reyes test, break dates are endogenous. It includes two test procedures.
The Additive Outlier (AO) procedure applies a filter to detrend the series before performing the unit
root test. It captures sudden changes in the series. The Innovational Outlier (IO) procedure detrends
and performs the unit root test at the same time. It captures incremental changes in the mean of the
series. The results of the test on EUA and CER price series are summarized in Table 5. The two
procedures show that the EUA and CER futures price series presents two break dates. They are slightly
different depending on the test procedure but they are very close, which reveals the robustness of the
results. EUA and CER futures price series present breaks in level in November 2008 and November
2011. For the CER series, there is an additional break in trend in November 2011.
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Table 5: Results of the Clemente Montañès and Reyes test on EUA et CER permit prices (in logarithms).

EUA future price CER future price

Test procedure IO AO IO AO

Series Level Variation Level Variation Level Variation Level Variation

DU1 -0.016 0.002 -0.546 0.0036 -0.006 -0.005 -0.471 -0.021

(-4.67) (1.47) (-49.46) (1.955) (-1.90) (-0.669) (-22.90) (-2.79)

{0.000} {0.141} {0.000} {0.052 {0.058} {0.504} {0.000} {0.005}

DU2 -0.016 0.0005 -0.606 0.0011 -0.006 -0.0003 -1.298 0.016

(-4.82) (0.287) (-63.43) (0.608) (-1.39) (-0.038) (-72.74) (2.08)

{0.000} {0.774} {0.000} {0.543} {0.163} {0.970} {0.000} {0.037}

ρ−1 -0.028 0.925 -0.034 -0.895 -0.005 -0.899 -0.014 -0.904

(-5.36) (-25.43) (-4.67) (-10.66) (-1.427) (-24.34) (-2.473) (-10.12)

[-5.49] [-5.49] [-5.49] [-5.49] [-5.49] [-5.49] [-5.49] [-5.49]

Conclusion I(1) I(0) I(1) I(0) I(1) I(0) I(1) I(0)
Significant 13/10/08 03/11/08 21/11/08 23/11/11

dates of breaks 15/09/11 28/11/11 28/11/11 16/12/11

Note: The values in () and [] are respectively the t-statistics and the critical values at the 5% significance level tabulated by Clemente

Montañès and Reyes. Values in {} are p-values.The null hypothesis of the unit root test is rejected when the t-statistic is smaller than

the critical value.
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B. Two-step estimation of DCCE models.

The estimation of the parameters of multivariate models is based on the maximum-likelihood method.
With Gaussian residuals, the likelihood function is:

LT =

T∑

t=1

log f(yt | θ, η, It−1)

Here f(yt | θ, η, It−1) = |Ht|−
1

2 g(H
−

1

2

t (yt −µt)), the density function of yt given the parameter vector
θ and η. We assume that (yt − µt) N(0, IN ). Thus, the log-likelihood function is:

LT (θ) = −1

2

T∑

t=1

[
log |Ht|+ (yt − µt)

′H−1

t (yt − µt)
]

The Gaussian likelihood provides a consistent quasi-likelihood estimator, even if the true density is not
Gaussian. In the case of a DCC model the log-likelihood consists of two parts. The first part depends
on the volatility parameters and the second one on the parameters of the conditional correlations given
the volatility parameters. With Ht = DtRtDt, we obtain:

LT (θ) = −1

2

T∑

t=1

[
log |DtRtDt|+ u′

tR
−1

t ut

]

where ut = D−1

t (yt − µt) and u′

tR
−1

t ut = (yt − µt)
′D−1

t R−1

t D−1

t (yt − µt). With this notation, the
log-likelihood is:

LT (θ) = −1

2

T∑

t=1

[
log |DtRtDt|+ u′

tR
−1

t ut

]

LT (θ) = −1

2

T∑

t=1

[2 log |Dt|+ u′

tut]

︸ ︷︷ ︸

− 1

2

T∑

t=1

[
log |Rt|+ u′

tR
−1

t ut − u′

tut

]

︸ ︷︷ ︸

Q1LT (θ
∗

1
) Q2LT (θ

∗

1
, θ∗

2
)

where θ∗
1

represent the parameters of the conditional variance Dt and θ∗
2

those of the conditional
correlation Rt. The log-likelihood function can then be written as follows:

LT (θ) = Q1LT (θ
∗

1
) +Q2LT (θ

∗

1
, θ∗

2
)

The coefficients (θ∗
1
, θ∗

2
) are estimated in two stages. In the first stage, we estimate θ∗

1
= argmaxQ1LT (θ

∗

1
)

and, in the second one, we estimate θ∗
2
= argmaxQ2LT (θ

∗

1
, θ∗

2
).
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C. Estimation results of the DCCE model.

Table 6: Estimation results of the DCC model.

Variance equation

CER price variations EUA price variations

ARCH 0.167*** (0.000) 0.144*** (0.000)

GARCH 0.832*** (0.000) 0.855*** (0.000)

cons 0.000*** (0.000) 0.000*** (0.000)

Correlation parameters

θ1 0.054*** (0.000)

θ2 0.879*** (0.000)

Note: P-values are in (); *, ** and *** respectively refer to the

10%, 5% and 1% significance levels of the estimated coefficients.
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