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Abstract 

 

Many studies have demonstrated the feasibility of fully renewable power systems in various countries 

and regions. Yet the future costs of key technologies are highly uncertain and little is known about the 

robustness of a renewable power system to these uncertainties. We build 315 long-term cost scenarios 

on the basis of recent prospective studies, varying the costs of key technologies. We model the optimal 

renewable power system for France over 18 meteorological years, simultaneously optimizing 

investment and dispatch.  

Our results show that the optimal energy mix is highly sensitive to cost assumptions: the installed 

capacity in PV, onshore wind and power-to-gas varies by a factor of 5, batteries and offshore wind even 

more. Nevertheless, we have a robust result showing that the cost of a 100% renewable power system 

will not be higher than today. Finally, we show that the cost of not installing the absolutely ‘optimal’ mix 

is limited. Contrary to current estimates of increasing integration costs, this indicates that renewable 

technologies will become by and large substitutable. 
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1. Introduction 

According to Article 4 of the Paris Agreement, the Parties shall endeavor to rapidly reduce greenhouse 

gas emissions in order to achieve a balance between anthropogenic emissions by sources and removals 

by sinks in the second half of this century. From this point of view, the electricity sector will have a key 

role to play, as decarbonation is considered to be easier in this sector than in transport, buildings or 

agriculture. Renewable energy will be the cornerstone of decarbonation, making, with a greater 

contribution than nuclear energy and fossil fuels combined to CO2 capture and storage (Rogelj et al., 

2018). 

Following Joskow (2011) and Hirth (2015), many articles have focused on the optimal proportion of 

renewable energies in the electricity mix. This literature has highlighted the existence of systemic 

integration costs related to the deployment of variable renewable energies. In particular, a “self-

cannibalization” phenomenon was highlighted, linked to the fact that all the solar panels in a given farm 

produce their electricity at the same time, just like wind turbines. In the absence of affordable storage, 

these integration costs have two consequences: (i) deployment of renewable energies leads to a 

significant additional cost, rapidly increasing with the deployment rate; (ii) the right balance must be 

struck between the different production technologies to minimize this additional cost.  

However, two main factors encourage us to review these results. The first is the rapid decline in 

production and storage costs. Between 2010 and 2018, the cost of photovoltaic energy has decreased 

by 84%, while batteries now seem to be following a similar pattern (Henze, 2019). Moreover, recent 

wind turbines benefit from a flatter production profile than older models (Hirth and Müller, 2016). 

Finally, methanation, which offers an alternative for seasonal storage, is also making significant 

progress. These developments will probably still be significant by 2050, the political horizon used today 

in the design of public policies. While the feasibility of a 100% renewable mix has already been 

highlighted by many studies (Brown et al, 2018, and references therein), the question is now that of 

competitiveness: do these reductions in production and storage costs call into question the previous 

conclusions about the announced high additional systemic cost of renewable energy?   

The second factor is the awareness that cost uncertainties should be taken into account when designing 

an optimal electricity mix, because the ex-ante optimal mix is not necessarily the most robust to cost 

uncertainty (Nahmmacher et al., 2016; Perrier 2018). Most studies which have analyzed the cost of a 

100% renewable mix include little uncertainty analysis. One exception is Schlachtberger et al. (2018) 

who study the influence of technology costs on power capacity and system costs, but they vary each 

component separately, keeping the remaining parameters fixed. Since technologies are not independent 

of one another, a more complete uncertainty analysis is worthwhile. 

These uncertainties generate a trade-off between visibility and flexibility. On the one hand, investors 

want visibility for the development of economic sectors, with the example of quantified targets in terms 

of installed renewable capacity. On the other hand, the progressive arrival of information about 

technology costs argues for a flexible approach, allowing trajectories to be readjusted along the way – 

which hinders investor visibility.  

One way to shed some light onto this issue is to calculate the cost of error, i.e. the cost difference 

between the ex-post-optimal energy mix (based on actual costs) and the ex-ante-optimal energy mix 
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(based on cost forecasts). If a “robust” energy mix, i.e. one which generally entails a low cost of error, 

can be identified, then committing to a visible trajectory is not too detrimental, in that the extra cost will 

not be too high if the ex-post costs turn out to differ from the ex-ante costs. 

Against this background, the objective of this article is twofold. First, we assess the sensitivity of the 

optimal (i.e. cost-minimizing) renewable power system to technology costs. Second, we calculate the 

cost of error and look for a robust energy mix. 

To achieve this objective, we build a new open-source model called EOLES (Energy Optimization for Low 

Emission Systems) and apply it to continental France. EOLES minimizes the total system cost while 

satisfying power demand each hour for a period of up to 18 years. It includes six power generation 

technologies (offshore and onshore wind, solar, two types of hydro and biogas) and three storage 

technologies (batteries, pumped hydro and power-to-gas). Based on recent prospective studies for the 

year 2050, especially from a JRC study (Tsiropoulos et al., 2017), we build 315 cost scenarios for 2050, 

varying key technology costs (inshore and offshore wind by +/- 25%; photovoltaics (PV), batteries and 

power-to-gas by +/-50%).  

In a preliminary step, we first show that optimizing the energy mix for a randomly chosen 

meteorological year (henceforth “weather-year”) may yield a very different mix than that which results 

from optimizing over the 18 weather-years simultaneously, especially regarding the proportion of 

offshore vs. onshore wind and the role of storage technologies (batteries and power-to-gas). Then we 

select the weather-year that is most representative of the whole period (2006) and perform a sensitivity 

analysis with the above-mentioned 315 cost scenarios. 

We then show that the optimal energy mix varies a lot across cost scenarios: the installed capacity in PV, 

onshore wind and power-to-gas varies by a factor of 5, batteries and offshore wind even more. 

However, we have a robust result showing that the system cost (including electricity production and 

storage) is not higher than the cost prevailing today: it reaches €50/MWh on average and €65/MWh in 

the worst-case scenario. The energy mix optimized for the central cost scenario turns out to be the most 

robust and the cost of error generally low: about €2/MWh on average, i.e. 4% of the system cost. 

The remainder of this paper is organized as follows. In Section 2 we present the EOLES model and the 

input parameters. Results are presented in Section 3 while Section 4 provides a discussion and Section 5 

concludes. Three Appendices provide additional results and methodological details. 

2. Materials and methods 

2.1 Model description 

EOLES is a dispatch and investment model that carries out linear optimization with respect to total cost. 

It is written in GAMS and solved using the CPLEX solver. The code and data are available on Github1. We 

minimize the annualized power generation and storage costs, including the cost of connection to the 

grid. The costs related to the transmission and distribution grid are not taken into account because of 

                                                           
1
 https://github.com/BehrangShirizadeh/EOLES_elecRES. 
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lack of empirical data for a 100% renewable power system. We address this issue in the discussion in 

Section 4. 

The EOLES model (Figure 1) includes six power generation technologies: offshore and onshore 

windpower, solar photovoltaics (PV), run-of-river and lake-generated hydro-electricity, and biogas 

combined with open-cycle gas turbines. It includes three energy storage technologies: pump-hydro 

storage (PHS), batteries and methanation combined with open-cycle gas turbines.  

It considers continental France as a single node. PV and onshore wind are simulated for the 95 of French 

départements (an administrative entity corresponding to the European NUTS 3 level). The proportion of  

the installed capacity in each département remains the same in all simulations, at the level observed in 

2017. EOLES builds on the FLORE (French Linear Optimization for Renewable Expansion) model 

developed by Perrier (2018) but includes more technologies and a different method to produce 

generation profiles.  

 

Figure 1. Graphical description of the EOLES model 

2.1.1. Sets and parameters 

Table 1 presents the sets and indices of the EOLES model, Table 2 the parameters. Throughout the 

paper, every energy unit (e.g. MWh) or power unit (e.g. MW) is expressed in electricity-equivalent. For 
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instance, some energy is stored in the form of methane, to be transformed later into electricity using 

open-cycle natural gas plants with 45% efficiency. In this case, when we indicate that 45 𝑀𝑊ℎ𝑒 is stored 

in the natural gas network, it means that 100 MWh of methane is stored, which will allow 45 𝑀𝑊ℎ𝑒  of 

electricity to be generated. 

Table 1. Sets and indices of the EOLES model 

Index Set Description  

ℎ ∈ H Hours    

𝑚 ∈ M Months   

𝑡𝑒𝑐 ∈ TEC Electricity generation and energy storage technologies   

𝑔𝑒𝑛 ∈ GEN ⊆ TEC Electricity generation technologies   

𝑣𝑟𝑒 ∈ VRE ⊆ TEC Variable renewable electricity generation technologies   

𝑠𝑡𝑟 ∈ STR ⊆ TEC Energy storage technologies   

𝑛𝑐𝑜𝑚𝑏 ∈ NCOMB ⊆ TEC Non-combustible generation technologies  

𝑐𝑜𝑚𝑏 ∈ COMB ⊆ TEC Combustible generation technologies  

𝑓𝑟𝑟 ∈ FRR ⊆ TEC Dispatchable technologies for secondary reserves   

 

Table 2. Parameters of the EOLES model 

Parameter Unit Value
1
 Description 

𝑚𝑜𝑛𝑡ℎℎ [-]  A parameter to show which month each hour is in 

𝑐𝑓
𝑣𝑟𝑒,ℎ

 [-]  Hourly production profiles of variable renewable energies 

𝑑𝑒𝑚𝑎𝑛𝑑ℎ [𝐺𝑊𝑒]  Hourly electricity demand profile 

𝑙𝑎𝑘𝑒𝑚 [𝐺𝑊ℎ𝑒]  Monthly extractable energy from lakes 

𝑟𝑖𝑣𝑒𝑟ℎ [-]  Hourly run-of-river capacity factor profile 

𝜀𝑣𝑟𝑒 [-]  Additional frequency restoration requirement for 

renewables because of forecast errors 

𝑞
𝑡𝑒𝑐
𝑒𝑥  [𝐺𝑊𝑒]  Existing capacity by technology 

𝑎𝑛𝑛𝑢𝑖𝑡𝑦
𝑡𝑒𝑐

 [M€/𝐺𝑊𝑒/year]  Annualized capital cost of each technology 

                                                           
1
 For vectors and matrices, no value is displayed in the Table but the information is available at 

https://github.com/BehrangShirizadeh/EOLES_elecRES. 
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𝑎𝑛𝑛𝑢𝑖𝑡𝑦
𝑠𝑡𝑟
𝑒𝑛  [M€/𝐺𝑊ℎ/year]  Annualized capital cost of energy volume for storage 

technologies 

𝑐𝑎𝑝𝑒𝑥
𝑠𝑡𝑟
𝑐ℎ  [M€/𝐺𝑊 /year]  Annualized capital cost of storage technology charging 

power  

𝑓𝑂&𝑀
𝑠𝑡𝑟
𝑐ℎ  [M€/𝐺𝑊 /year]  Fixed operation and maintenance cost of storage 

technology charging power  

𝑓𝑂&𝑀
𝑡𝑒𝑐

 [M€/𝐺𝑊𝑒 /year]  Annualized fixed operation and maintenance cost 

𝑣𝑂&𝑀𝑡𝑒𝑐 [M€/𝐺𝑊ℎ𝑒]  Variable operation and maintenance cost of each 

technology 

𝜂
𝑠𝑡𝑟
𝑖𝑛  [-]  Charging efficiency of storage technologies 

𝜂
𝑠𝑡𝑟
𝑜𝑢𝑡 [-]  Discharging efficiency of storage technologies 

𝑞𝑝𝑢𝑚𝑝 𝐺𝑊𝑒  9.3 Pumping capacity for Pumped hydro storage 

𝑒𝑃𝐻𝑆
𝑚𝑎𝑥 𝐺𝑊ℎ𝑒 180 Maximum energy volume that can be stored in PHS 

reservoirs 

𝑒𝑏𝑖𝑜𝑔𝑎𝑠
𝑚𝑎𝑥  𝑇𝑊ℎ𝑒 15 Maximum yearly energy that can be generated from 

biogas 

𝛿𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦
𝑙𝑜𝑎𝑑  [-] 0.01 Uncertainty coefficient for hourly electricity demand 

 𝛿𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛
𝑙𝑜𝑎𝑑  [-] 0.1 Load variation factor 

 

2.1.2. Variables 

The main variables resulting from the optimization are presented in Table 3. 
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Table 3. Variables of the EOLES model 

variable Unit description 

𝐺𝑡𝑒𝑐,ℎ 𝐺𝑊ℎ𝑒 Hourly electricity generation by technology 

𝑄𝑡𝑒𝑐 𝐺𝑊𝑒 Installed capacity by technology 

𝑆𝑇𝑂𝑅𝐴𝐺𝐸𝑠𝑡𝑟,ℎ 𝐺𝑊ℎ Hourly electricity entering each storage technology 

𝑆𝑇𝑂𝑅𝐸𝐷𝑠𝑡𝑟,ℎ 𝐺𝑊ℎ𝑒 Hourly energy stored in each technology 

𝑆𝑠𝑡𝑟 GW Installed charging capacity by storage technology 

𝑉𝑂𝐿𝑈𝑀𝐸𝑠𝑡𝑟 𝐺𝑊ℎ Energy capacity by storage technology 

𝑅𝑆𝑉𝑓𝑟𝑟,ℎ 𝐺𝑊𝑒 Hourly upward frequency restoration requirement 

𝐶𝑂𝑆𝑇 b€ Overall final investment cost, annualized 

 

2.1.3 Equations 

2.1.3.1. Objective Function 

In EOLES, dispatch and investment are determined simultaneously by linear optimization. CAPEX (capital 

expenditure) and OPEX (operational expenditure) are considered annually. For some storage options, 

two categories of CAPEX are introduced: one per 𝑘𝑊𝑒 of charging capacity, the other per 𝑘𝑊ℎ𝑒  of 

energy-related capacity.  

Equation (1) is the objective function, which minimizes the objective variable (annualized total cost) over 

the chosen period using hourly time slices.  

𝐶𝑂𝑆𝑇 = (∑ [(𝑄𝑡𝑒𝑐 − 𝑞𝑡𝑒𝑐
𝑒𝑥 ) × 𝑎𝑛𝑛𝑢𝑡𝑖𝑦𝑡𝑒𝑐]𝑡𝑒𝑐 +  ∑ (𝑉𝑂𝐿𝑈𝑀𝐸𝑠𝑡𝑟𝑠𝑡𝑟 × 𝑎𝑛𝑛𝑢𝑖𝑡𝑦𝑠𝑡𝑟

𝑒𝑛 ) +  ∑ (𝑄𝑡𝑒𝑐 ×𝑡𝑒𝑐

𝑓𝑂&𝑀𝑡𝑒𝑐) + ∑ (𝑆𝑠𝑡𝑟 × (𝑐𝑎𝑝𝑒𝑥
𝑠𝑡𝑟
𝑐ℎ + 𝑓𝑂&𝑀

𝑠𝑡𝑟
𝑐ℎ ))𝑠𝑡𝑟  ∑ ∑ (𝐺𝑡𝑒𝑐,ℎ ×  𝑣𝑂&𝑀𝑡𝑒𝑐)ℎ𝑡𝑒𝑐 )/1000 (1) 

The different components of the cost for a power plant are CAPEX, fixed operation and maintenance 

costs (fO&M) and variable operation and maintenance costs (vO&M). fO&M is the yearly maintenance 

costs of a power plant and vO&M is the fuel cost. Annuity in equation (1) is the annualized form of the 

overall CAPEX of the power plant calculated as in equation (2).  

𝑎𝑛𝑛𝑢𝑖𝑡𝑦𝑡𝑒𝑐 =
𝐷𝑅×𝐶𝐴𝑃𝐸𝑋𝑡𝑒𝑐

1− (1+𝐷𝑅)−𝑙𝑡  (2) 

Where DR is the discount rate; here DR=4.5% i.e. the discount rate recommended by the French 

government for use in public socio-economic analyses (Quinet 2014). lt is the lifetime of the investment.  
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2.1.3.2. Adequacy equation 

Electricity demand must be met for each hour. If power production exceeds electricity demand, the 

excess electricity can be either sent to storage units or curtailed (equation 3).  

∑ 𝐺𝑡𝑒𝑐,ℎ𝑡𝑒𝑐 ≥  𝑑𝑒𝑚𝑎𝑛𝑑ℎ +  ∑ 𝑆𝑇𝑂𝑅𝐴𝐺𝐸𝑠𝑡𝑟,ℎ𝑠𝑡𝑟   (3) 

Where 𝐺𝑡𝑒𝑐,ℎ is the power produced by technology tec at hour h and 𝑆𝑇𝑂𝑅𝐴𝐺𝐸𝑠𝑡𝑟,ℎ is the energy 

entering the storage technology str at hour h.  

2.1.3.3. Renewable power production 

For each variable renewable energy (VRE) technology, the hourly capacity factor profile multiplied by 

the installed capacity available for each hour gives the hourly power production (equation 4). 

𝐺𝑣𝑟𝑒,ℎ =  𝑄𝑣𝑟𝑒 ×  𝑐𝑓𝑣𝑟𝑒,ℎ (4) 

Where 𝐺𝑣𝑟𝑒,ℎ is the electricity produced by each VRE resource at hour h, 𝑄𝑣𝑟𝑒 is the installed capacity 

and 𝑐𝑓𝑣𝑟𝑒,ℎ is the hourly capacity factor. 

2.1.3.4. Energy storage 

Energy stored by storage option str at hour h+1 is equal to the energy stored at hour h plus the 

difference between the energy entering and leaving the storage option at hour h, accounting for 

charging and discharging efficiencies (equation 5): 

𝑆𝑇𝑂𝑅𝐸𝐷𝑠𝑡𝑟,ℎ+1 =  𝑆𝑇𝑂𝑅𝐸𝐷𝑠𝑡𝑟,ℎ + (𝑆𝑇𝑂𝑅𝐴𝐺𝐸𝑠𝑡𝑟,ℎ × 𝜂𝑠𝑡𝑟
𝑖𝑛 ) − (

𝐺𝑠𝑡𝑟,ℎ

𝜂𝑠𝑡𝑟
𝑜𝑢𝑡 ) (5)     

Where 𝑆𝑇𝑂𝑅𝐸𝐷𝑠𝑡𝑟,ℎ is the energy in storage option str at hour h, while 𝜂𝑠𝑡𝑟
𝑖𝑛  and 𝜂𝑠𝑡𝑟

𝑜𝑢𝑡 are the charging 

and discharging efficiencies.  

2.1.3.5. Secondary reserve requirement 

Three types of operating reserves are defined by ENTSO-E (2013), according to their activation speed. 
The fastest reserves are Frequency Containment Reserves (FCRs), which must be able to be on-line 
within 30 seconds. The second group is made up of Frequency Restoration Reserves (FRRs), in turn 
divided into two categories: a fast automatic component (aFRRs), also called ‘secondary reserves’, with 
an activation time of no more than 7.5 min; and a slow manual component (mFRRs), or ‘tertiary 
reserves’, with an activation time of no more than 15 min. Finally, reserves with a startup-time beyond 
15 minutes are classified as Replacement Reserves (RRs).  
 
Each category meets specific system needs. The fast FCRs are useful in the event of a sudden break, like 
a line fall, to avoid system collapse. FRRs are useful for variations over several minutes, such as a 
decrease in wind or PV output. Finally, the slow RRs act as a back-up, slowly replacing FCRs or FRRs 
when the system imbalance lasts more than 15 minutes. In the model we only consider FRRs, since they 
are the most impacted by VRE integration. FRRs can be defined either upwards or downwards, but since 
the electricity output of VREs can be curtailed, we consider only upward reserves. 
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The quantity of FRRs required to meet ENTSO-E’s guidelines is given by equation (6). These FRR 
requirements vary with the variation observed in the production of renewable energies. They also 
depend on the observed variability in demand and on forecast errors: 

∑ 𝑅𝑆𝑉𝑓𝑟𝑟,ℎ𝑓𝑟𝑟 =  ∑ (𝜀𝑣𝑟𝑒 ×  𝑄𝑣𝑟𝑒)𝑣𝑟𝑒 +  𝑑𝑒𝑚𝑎𝑛𝑑ℎ × (1 + 𝛿𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛
𝑙𝑜𝑎𝑑 ) × 𝛿𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦

𝑙𝑜𝑎𝑑  (6) 

Where 𝑅𝑆𝑉𝑓𝑟𝑟,ℎ is the required hourly reserve capacity from each of the reserve-providing technologies 

(dispatchable technologies) indicated by the subscript frr; 𝜀𝑣𝑟𝑒 is the additional FRR requirement for VRE 

because of forecast errors, 𝛿𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛
𝑙𝑜𝑎𝑑  is the load variation factor and 𝛿𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦

𝑙𝑜𝑎𝑑  is the uncertainty 

factor in the load because of hourly demand forecast errors. The method for calculating these various 

coefficients according to ENSTO-E guidelines is detailed by Van Stiphout (2017). 

2.1.3.6. Power-production-related constraints 

The relationship between hourly-generated electricity and installed capacity can be calculated using 

equation (7). Since the chosen time slice for the optimization is one hour, the capacity enters the 

equation directly instead of being multiplied by the time slice value. 

𝐺𝑡𝑒𝑐,ℎ ≤ 𝑄𝑡𝑒𝑐 (7) 

The installed capacity of all the dispatchable technologies should be more than the electricity generation 

required of those technologies to meet demand; it should also satisfy the secondary reserve 

requirements Installed capacity for dispatchable technologies can therefore be expressed by equation 

(8). 

𝑄𝑓𝑟𝑟 ≥  𝐺𝑓𝑟𝑟,ℎ + 𝑅𝑆𝑉𝑓𝑟𝑟,ℎ (8) 

Monthly available energy for the hydroelectricity generated by lakes and reservoirs is defined using 

monthly lake inflows (equation 9). This means that energy stored can be used within the month but not 

across months. This is a parsimonious way of representing the non-energy operating constraints faced 

by dam operators, as in Perrier (2018). 

𝑙𝑎𝑘𝑒𝑚 ≥  ∑ 𝐺𝑙𝑎𝑘𝑒,ℎ𝑓𝑜𝑟 ℎ∈𝑚  (9) 

Where 𝐺𝑙𝑎𝑘𝑒,ℎ is the hourly power production by lakes and reservoir, and 𝑙𝑎𝑘𝑒𝑚 is the maximum 

electricity that can be produced from this energy resource during one month. This parameter is 

calculated by summing hourly power production from this hydroelectric energy resource over each 

month of the year to capture the meteorological variation of hydroelectricity, using the online portal of 

RTE1 (the French transmission network operator). 

The energy that can be produced by biogas is limited, since the main resources of this energy are 

methanization (anaerobic digestion) and pyro-gasification of solid biomass. Both processes are limited 

by several constraints and according to the ADEME “visions 2030-2050” report (2013) electricity from 

biogas produced by these two processes can be projected as 15 TWh per year from 2030 on (𝑒𝑏𝑖𝑜𝑔𝑎𝑠
𝑚𝑎𝑥 ), 

which is presented in equation 10. 

                                                           
1
 https://www.rte-france.com/fr/eco2mix/eco2mix-telechargement  

https://www.rte-france.com/fr/eco2mix/eco2mix-telechargement
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∑ 𝐺𝑏𝑖𝑜𝑔𝑎𝑠,ℎ
8759
ℎ=0 ≤  𝑒𝑏𝑖𝑜𝑔𝑎𝑠

𝑚𝑎𝑥  (10) 

Run-of-river power plants represent another source of hydro-electricity power. River flow is also 

strongly dependent on meteorological conditions and it can be considered as a variable renewable 

energy resource. Hourly run-of-river power production data from the RTE online portal has been used to 

prepare the hourly capacity factor profile of this energy resource, 𝑟𝑖𝑣𝑒𝑟ℎ in equation (11); 

𝐺𝑟𝑖𝑣𝑒𝑟,ℎ =  𝑄𝑟𝑖𝑣𝑒𝑟  ×  𝑟𝑖𝑣𝑒𝑟ℎ (11) 

As shown in Figure 1, two renewable gas technologies are considered; biogas and methanation. Both of 

them produce renewable methane, which can be used in gas power plants. In the model, the latter is 

considered to be an open cycle gas turbine (OCGT) due to its high operational flexibility and equation 

(12) shows the relationship of the power production from these two methane resources; 

𝐺𝑔𝑎𝑠,ℎ =  ∑ 𝐺𝑐𝑜𝑚𝑏,ℎ𝑐𝑜𝑚𝑏  (12) 

Where 𝐺𝑐𝑜𝑚𝑏,ℎ is the power production from each renewable gas resource, and 𝐺𝑔𝑎𝑠,ℎ is the power 

production from the OCGT power plant which uses these two resources as fuel. It is worth mentioning 

that the efficiency of this combustion process is taken into account in both the 15 𝑇𝑊ℎ𝑒 of yearly 

electricity production from biogas, and the discharge efficiency of the methanation process as defined in 

equation (5). 

The maximum installed capacity of each technology depends on land-use-related constraints, social 

acceptance, the maximum available natural resources and other technical constraints; therefore, a 

technological constraint on maximum installed capacity is defined in equation (13) where 𝑞𝑡𝑒𝑐
𝑚𝑎𝑥 is this 

capacity limit, taken from the development trajectories for the French electricity mix for the period 

2020-2060 (ADEME, 2018): 

𝑄𝑡𝑒𝑐 ≤  𝑞𝑡𝑒𝑐
𝑚𝑎𝑥 (13) 

2.1.3.7. Storage-related constraints 

To prevent optimization leading to a very high amount of stored energy in the first hour represented 

and a low one in the last hour, we add a constraint to ensure the replacement of the consumed stored 

electricity in every storage option (equation 14): 

𝑆𝑇𝑂𝑅𝐸𝐷𝑠𝑡𝑟,ℎ=0 ≤  𝑆𝑇𝑂𝑅𝐸𝐷𝑠𝑡𝑟,ℎ=8759 (14) 

While equations (5) and (14) define the storage mechanism and constraint in terms of power, we also 

limit the available volume of energy that can be stored by each storage option (equation 15): 

𝑆𝑇𝑂𝑅𝐸𝐷𝑠𝑡𝑟,ℎ ≤  𝑉𝑂𝐿𝑈𝑀𝐸𝑠𝑡𝑟  (15) 

Equation (16) limits the energy entry to the storage units to the charging capacity of each storage unit, 

which means that the charging capacity cannot exceed the discharging capacity.  

 𝑆𝑇𝑂𝑅𝐸𝐷𝑠𝑡𝑟,ℎ ≤  𝑆𝑠𝑡𝑟 ≤  𝑄𝑠𝑡𝑟 (16) 
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2.2 Input data 

The main input data can be placed in three main classes: cost data, VRE profiles and electricity demand 

profiles.  

2.2.1. Cost data 

The economic parameters for the power production technologies are taken from the European 

Commission Joint Research Center (2017) study of scenario-based cost trajectories to 2050, while 

energy technology reference indicator projections for 2010-2050 (JRC,(2014) have been used for OCGT 

gas power plants. Values attributed to the economic parameters of power production technologies for 

2050 are summarized in Table 4. It is worth mentioning that the grid entry cost of €25.9/kW for each 

power plant mandated by RTE (2018) has been added to the capital expenditure values of each VRE 

technology, and the annuities (annualized CAPEX) are the results of these calculations. More 

information about the cost scenarios and the cost estimation methodology used in the JRC’s 2017 study 

can be found in Appendix 1. 

Table 4. Economic parameters of power production technologies 

Technology CAPEX 

(€/kWe) 

Lifetime 

(years) 

Annuity 

(€/kWe/year) 

Fixed O&M 

(€/kWe/year) 

Variable O&M 

(€/MWhe) 

Source 

Offshore wind farm* 2330 30 144.3677 47.0318 0 JRC (2017) 

Onshore wind farm* 1130 25 77.6621 34.5477 0 JRC (2017) 

Solar PV* 425 25 30.0052 9.2262 0 JRC (2017) 

Hydroelectricity –  

lake and reservoir 

2275 60 110.2334 11.375 0 JRC (2017) 

Hydroelectricity –  

run-of-river 

2970 60 143.9091 14.85 0 JRC (2017) 

Biogas  

(Anaerobic digestion) 

2510 25 135.5066 83.9 3.1 JRC (2017) 

OCGT  550 30 33.7653 16.5 0 JRC (2014) 

*For offshore wind power on monopiles at 30km to 60km from the shore, for onshore wind power, turbines with medium specific capacity 

(0.3kW/m2) and medium hub height (100m) and for solar power, an average of the costs of utility scale, commercial scale and residential scale 

systems without tracking are taken into account. 
 

In this cost allocation, we consider solar power as a simple average of ground-mounted, rooftop 

residential and rooftop commercial technologies. For lake and reservoir hydro we take the mean value 

of low-cost and high-cost power plants. 

For the storage technologies, the ”Commercialization of Energy Storage in Europe” report prepared by 

FCH-JU (2015) and a very recent article by Schmidt (2019) about long-term cost projections of storage 

technologies have been used respectively for pumped hydro storage and Li-Ion battery storage options. 

“The potential of Power-to-Gas” study by De Bucy (2016) has been used for methanation storage. Using 
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these three studies the 2050 cost projection of storage technologies are presented in Table 5. The cost 

of methanation is made up of the cost of electrolysis units and the Sabatier reaction1. 

Table 5. Economic parameters of storage technologies 

Technology CAPEX 

(€/kWe) 

CAPEX 

(€/kWhe) 

Lifetime 

(years) 

Annuity 

(€/kWe/year) 

Fixed O&M 

(€/kWe/year) 

Variable 

O&M 

(€/MWhe) 

Storage 

annuity 

(€/kWhe/year) 

Source 

Pumped hydro 

storage (PHS) 

500 5 55 24.6938 7.5 0 0.2261 FCH-JU 

(2015) 

Battery storage 

(Li-Ion) 

140 100 12.5 14.8876 1.96 2 10.3247 Schmidt 

(2019) 

Methanation  1150 0 20/25* 117.9262 75.75 3 0 ENEA 

(2016) 
*The lifetime of electrolysis units is 20 years, while the lifetime of methanation units is 25 years. 
The carbon dioxide required for methanation is assumed to come from capturing and transporting the 

excess carbon dioxide resulting from the methanization process (for the production of biogas). About 

30% of the product of bio-methane production from methanization by anaerobic digestion is gas phase 

carbon dioxide (Ericsson, 2017). According to ZEP (2011) on 𝐶𝑂2 transport, the cost of transporting 

carbon dioxide along a 200km onshore pipeline is €4/𝑡𝐶𝑂2, given that each mole of carbon dioxide 

weighs 44 grams, and we can produce one mole of methane from one mole of 𝐶𝑂2 with an efficiency of 

80% and each mole of methane can produce 802.3kJ of thermal energy. Considering an OCGT 

combustion efficiency of 45% (JRC 2014): 

1 𝑡 𝐶𝑂2

1000000 𝑔 𝐶𝑂2
×

44 𝑔 𝐶𝑂2

1 𝑚𝑜𝑙 𝐶𝑂2
×

1 𝑚𝑜𝑙 𝐶𝑂2

0.8 𝑚𝑜𝑙 𝐶𝐻4
×

1 𝑚𝑜𝑙 𝐶𝐻4

802.3 𝑘𝐽
×

1 𝑘𝐽 𝑡ℎ

0.00022277778 𝑘𝑊ℎ 𝑡ℎ
×

1 𝑘𝑊ℎ 𝑡ℎ

0.45 𝑘𝑊ℎ 𝑒𝑙𝑒𝑐
×

1000 𝑘𝑊ℎ 𝑒𝑙𝑒𝑐

1 𝑀𝑊ℎ 𝑒𝑙𝑒𝑐
=

 0.5486
𝑡𝐶𝑂2

𝑀𝑊ℎ 𝑒𝑙𝑒𝑐
  

Considering a 100km long onshore pipeline (considering maximum 100km of distance between the 

methanation units and the biogas production units), the 𝐶𝑂2 transport cost for the methanation storage 

is €1/MWh, to be added to the gas storage cost which is €2/MWh (according to CRE (2018) - French 

energy regulation commission), the variable cost of the methanation storage is €3/𝑀𝑊ℎ𝑒. 

2.2.2. VRE profiles 

Variable renewable energies’ (offshore and onshore wind and solar PV) hourly capacity factors have 

been prepared using the renewables.ninja website2, which provides the hourly capacity factor profiles of 

solar and wind power from 2000 to 2017 at the geographical scale of French départements, following 

the methods elaborated by Pfenninger and Staffell (2016) and Staffell and Pfenninger (2016). These 

renewables.ninja factors reconstructed from weather data provide a good approximation of observed 

data: Moraes et al. (2018) finds a correlation of 0.98 for wind and 0.97 for solar power with the in-situ 

observations provided by the French transmission system operator (RTE). 

To prepare hourly capacity factor profiles for offshore wind power, we first identified all the existing 

offshore projects around France using the “4C offshore” website3, and using their locations, we 

extracted the hourly capacity factor profiles of both floating and grounded offshore wind farms. We 

then averaged the most remarkable projects for each offshore wind foundation technology (floating and 

                                                           
1 The reaction that produces methane from hydrogen and carbon dioxide –  𝐶𝑂2 + 4𝐻2 → 𝐶𝐻4 + 2𝐻2𝑂 – is called the Sabatier reaction. 
2 https://www.renewables.ninja/  
3 https://www.4coffshore.com/  

https://www.renewables.ninja/
https://www.4coffshore.com/
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grounded) for each year from 2000 to 2017. The Siemens SWT 4.0 130 has been chosen as the offshore 

wind turbine technology because of recent increase in the market share of this model and its high 

performance. The hub height of this turbine is set to 120 meters. 

Appendix 2 provides more information about the methodology used in the preparation of hourly 

capacity factor profiles of wind and solar power resources. 

2.2.3. Electricity demand profile 

Hourly electricity demand is ADEME (2015)’s central demand scenario for 2050. This demand profile falls 

in the middle of the four proposed demand scenarios for 2050 in France by Arditi et al. (2013) during the 

national debates on the French energy transition (DNTE). It amounts to 422 𝑇𝑊ℎ𝑒/year, 12% less than 

the average power consumption in the last 10 years. 

3. Results 

In this section, we first present the optimization results for each year from 2000 to 2017 and the 

optimization over the whole 18-year period. Then we select a representative year in order to perform a 

sensitivity analysis. 

3.1. Optimization results 

3.1.1. Yearly and 18-year optimization results 

First, we ran the model for each year from 2000 to 2017 (henceforth “weather-years”). Thus, we can 

test how the optimal mix of variable renewables varies for different weather-years. 

Our results show that the optimal power mix varies significantly from one year to another, both in terms 

of electricity production, installed capacity, storage volume and storage capacity (Figure 2b and Table 

A.1 in Appendix 2). The largest variations (taking the ratio of the highest-to-lowest value) are associated 

with the proportion of onshore and offshore windpower. In particular, offshore capacity ranges from 

zero to 20 GW which is the maximum value allowed1. High values for offshore wind are reached either 

for weather-years with a high capacity factor for offshore wind (as in 2015) or for weather-years with a 

low capacity factor for onshore wind (as in 2016), cf. Tables A.1 and A.2 in Appendix 2.  

In comparison, installed solar capacity is more stable (between 100.5GW and 122.2GW), due to a less 

volatile capacity factor (Figure 2c and Table A.2). Biogas always reaches the maximum allowed power 

generation and hydro the maximum allowed capacity.  

As far as storage capacity is concerned, pumped-hydro storage (PHS) also always reaches its maximum 

value while batteries and methanation vary a lot across weather-years (Figures 2d1 and 2d2). In 

comparison, the system LCOE and average power price (the dual variable of the adequacy constraint, i.e. 

equation 3), as well as the sum of VRE curtailment and storage losses are much more stable (Figures 2e 

and 2f). 

                                                           
1
 Maximum values are not binding for solar PV and onshore wind. 
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These results show that if the aim is to find an optimal energy mix, running a model on a randomly-

chosen weather-year can be very misleading. The optimal mix of renewables is highly sensitive to the 

chosen weather-year. This conclusion is consistent with those of Collins et al. (2018) and Zeyringer et al. 

(2018). As the weather of future years cannot be predicted, the best approach would be to run the 

model over several weather-years, as in our 18-year simulation. However, the drawback is a much 

longer optimization time, which prevents us from doing this for the 315 cost scenarios used in our 

sensitivity analysis. Hence it is necessary to select a representative year  for this stage in the work. 

3.1.2. Representative year selection 

The selection of a representative year could be made using several criteria. We chose to select the year 

with a capacity factor closest to our 18-year optimal mix. We used the capacity factor because it is 

invariable with respect to technology costs, on which we perform the sensitivity analysis. To measure 

the distance to the 18-year optimal mix, we compute the sum of absolute difference1 of the three VREs. 

Using this approach, 2006 is the closest year to the overall 18-year period, with a sum of absolute error 

values of 1.5% (Table A.4). We launched the model with the optimal installed capacities found for 2006 

over all other weather-years to test the adequacy of this installed capacity with respect to the other 17 

weather-years, and we did not observe any operational inadequacy.  

                                                           
1
 Sum of normalized absolute differences ∑ |

𝑥𝑖−𝑥∗
𝑖

𝑥∗
𝑖

|3
𝑖=1  where 𝑥𝑖  is the CF of each technology 𝑖 in each year and 𝑥∗

𝑖  

is the CF of that technology over 18 years. 
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Figure 2. Optimization results for each weather-year from 2000 to 2017 and for the whole 18-year period. (a) power production; 
(b) installed capacity; (c) average capacity factor of each VRE and the gas power plant for biogas produced by anaerobic 
digestion and methane produced by methanation; (d) storage volume in GWhe for batteries and pumped hydro storage (d1) and 
in TWhe for methanation (d2); (e) system LCOE and average power price of electricity; (f) load curtailment and storage losses. 
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The green dot shows the results of the optimization over the 18-year period and the red dot the results for weather-year 2006. 
The box plots show the first and third quartiles and the median for each scenario. 

 

There is a very close match between the percentage of each energy source for the overall 18-year long 

optimization and the representative year, i.e. 2006 (Figure 3). Onshore wind power is clearly dominant 

with solar power and offshore windpower as the second- and third- biggest sources of energy 

respectively. 

 

Figure 3. Energy mix for the chosen representative weather-year (2006, left) and for the 18-year optimization (right) 

Figure 4 also shows the dual-variable value of the supply-demand equilibrium constraint (equation 3) 

which can be interpreted as the power price in an energy-only competitive market. When demand 

exceeds production by non-dispatchable technologies, OCGTs are used and the power price often 

reaches €140.2/𝑀𝑊ℎ𝑒. On the contrary, when production by non-dispatchable technologies exceeds 

demand, the price often drops to €36.44/𝑀𝑊ℎ𝑒 which corresponds to the value of storing energy by 

methanation for future use. Sometimes it even drops to zero, corresponding to load curtailment. These 

price ranges are similar to those observed today on the spot market in France, and to those calculated 

by Abrell et al. (2019) for Germany, assuming a storage capacity similar to that of France. 
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Figure 4. Hourly power generation, electricity demand, storage charge and discharge profiles and power prices for (a) the third 
week of January (Winter) and (b) the third week of July (Summer) 2006  

In Table 6 we summarize the yearly power production LCOE (the levelized cost of electricity produced 

from each power plant without considering any future load curtailment or other losses) and average 

selling price for each generation technology and LCOS (levelized cost of storage; cf. Jülch et al., 2015) 

and the average selling price of each storage technology for weather-year 2006.  
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Table 6. LCOE/LCOS and average price of electricity sold and bought and unit profit for each technology, for weather-year 2006 

Prices 
(€/𝑀𝑊ℎ𝑒) 

Offshore Onshore PV Lake River Biogas Battery PHS Methanation 

LCOE/LCOS 41.58 39.45 27.60 100.00 40.80 82.00 83.65 16.80 109.36 

Average price of 
energy sold 

41.68 39.60 28.00 136.90 55.10 140.24* 98.00 89.10 140.24* 

Average price 
paid for energy  

- - - - - - 21.53 23.76 27.90 

Unit profit  0.10 0.15 0.40 36.90 14.30 58.24 -7.18 48.54 2.98 

* Price of gas sold, converted into electricity-equivalent by dividing the gas price by the energy efficiency of OCGTs. 

For all power production technologies, the average market selling price is higher than the LCOE, the 

difference being very low for the VRE resources (offshore wind ~€0.10/𝑀𝑊ℎ𝑒, onshore wind 

~€0.15/𝑀𝑊ℎ𝑒 and solar PV ~€0.40/𝑀𝑊ℎ𝑒) while for the other technologies this difference is much 

greater, especially for biogas (€44.40/𝑀𝑊ℎ𝑒). The profitability of hydro is due to the capacity 

constraint, while for biogas it is due to the production constraint, since these constraints generate a 

scarcity rent. 

While the profitability analysis is straightforward for all the power production technologies, it is more 

complicated for the storage technologies since they buy electricity from the market, and there are losses 

related to charging and discharging inefficiencies. Equation (17) shows the profitability criteria for the 

storage technologies in the calculation of unit profit:  

𝑝𝑟𝑜𝑓𝑖𝑡𝑠𝑡𝑟
𝑢𝑛𝑖𝑡 = [∑ (𝐺𝑠𝑡𝑟,ℎ × 𝑝ℎ

𝑚𝑎𝑟𝑘𝑒𝑡)ℎ − ∑ (𝑆𝑇𝑂𝑅𝐴𝐺𝐸𝑠𝑡𝑟,ℎ × 𝑝ℎ
𝑚𝑎𝑟𝑘𝑒𝑡)ℎ − (𝑄𝑠𝑡𝑟 × (𝐶𝑎𝑝𝑒𝑥𝑠𝑡𝑟 +

𝑓𝑂&𝑀𝑠𝑡𝑟) + (𝑉𝑂𝐿𝑈𝑀𝐸𝑠𝑡𝑟 × 𝐶𝑎𝑝𝑒𝑥𝑠𝑡𝑟
𝑒𝑛 ) + ∑ (𝐺𝑠𝑡𝑟,ℎ × 𝑣𝑂&𝑀𝑠𝑡𝑟))ℎ ]/ ∑ 𝐺𝑠𝑡𝑟,ℎℎ  (17) 

Where 𝑝ℎ
𝑚𝑎𝑟𝑘𝑒𝑡 is the market price of electricity at hour ℎ and 𝑝𝑟𝑜𝑓𝑖𝑡𝑠𝑡𝑟

𝑢𝑛𝑖𝑡 is the net profit of the unit of 

electricity bought by the storage units, charged and sold on the electricity market (accounting for 

storage-related inefficiencies), which can be considered as the net present value of each storage 

technology per unit of power sold.  

PHS is highly profitable because its capacity is limited, which generates a scarcity rent. Conversely, the 

profitability of batteries is negative because the FRR requirement leads to a higher battery capacity (by a 

factor of approximately two). 

3.2. Sensitivity analysis 

We take into account the uncertainty in the cost of the technologies indicated in Table 7. No variation in 

the cost of hydro and biogas is accounted for, the former because it is a mature technology with low 

uncertainty and the latter because in the model the amount of biogas used is determined by the 

availability constraint, not by its cost. 

For power generation technologies, uncertainty applies to the fixed costs, defined as capital costs and 

fixed operation and maintenance costs. For storage technologies, it applies to the main cost component 

of each of them; fixed costs for methanation (similar to power generation technologies) and energy-

related CAPEX for batteries. For wind technologies, the choice of a +/- 25% uncertainty range rather 

than +/- 50% comes from the expert elicitation survey by Wiser et al. (2016). 
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Table 7. Variations in the costs of key technologies accounted for in the sensitivity analysis 

Technology  Solar PV Offshore wind Onshore wind Batteries Methanation  

Uncertainty 
range 

-50%; -25%; 0%; 
+25%; +50% 

-25%; 0%; 
+25%; 

-25%; 0%; 
+25%; 

-50%; 0%; 
+50% 

-50%; 0%; 
+50% 

 

All the combinations of variations presented in Table 7 would give 405 different cost scenarios (51 × 34), 

but only 315 of them are included in the sensitivity analysis. Indeed, a future in which offshore wind 

would be more expensive than expected and onshore wind cheaper than expected (or vice-versa) is not 

realistic so the costs of these technologies can only differ by 25% at most. This leads to seven different 

offshore and onshore wind power cost scenario combinations. Multiplying by five solar power cost 

scenarios and three cost scenarios for each storage technology (7 × 51 × 32) we obtain 315 future cost 

scenarios. 

The optimal energy mix is highly sensitive to cost uncertainty (Figure 5). Offshore often reaches either 

zero installed capacity or the maximum allowed value, while the range of onshore and PV capacities is 

approximately five-fold across the cost scenarios. Storage technologies also demonstrate such high 

sensitivity, with the exception of PHS whose capacity is always fixed by the maximum allowed value. 

Battery capacity ranges from 7.6 to more than 279 𝐺𝑊ℎ𝑒  (nearly four times the capacity in the 

reference cost scenario) and methanation from 7 to 33.5 𝑇𝑊ℎ (more than twice the capacity in the 

reference cost scenario). 

However, the results for the whole system are much more robust: the sum of load curtailment and 

storage losses is generally in the range of 15%-20%, the system LCOE is scattered around €50/𝑀𝑊ℎ𝑒 

and the average power price around €55/𝑀𝑊ℎ𝑒. The LCOE ranges from €36.5 to €65.5/𝑀𝑊ℎ𝑒 for the 

most extreme cases, and the average LCOE is €2/𝑀𝑊ℎ𝑒 (i.e. 4%) less than in the reference cost 

scenario. The explanation is that in every scenario the energy mix is optimized, taking into account 

information about technology costs. This result shows that uncertainty about future technology costs is 

not necessarily a problem: it also provides opportunities to optimize the energy mix, reducing the 

expected system cost – provided that information on costs arrives soon enough to be accounted for 

when designing the power system. In the next subsection we will analyze the case of information 

arriving after the design of the power system. 

Colored arrows besides the whisker plots in Figure 5 show the impact of uncertainty on a single 

technology (combining offshore and onshore wind technologies). Obviously, each option is particularly 

influenced by its own cost, but less obvious relationships appear. In particular, a higher cost of 

methanation entails much more offshore wind and vice-versa. Indeed, electricity from offshore wind 

suffers from a higher LCOE than the other VREs (Table 6) but is more stable, generating less need for 

storage. Conversely a higher cost of batteries reduces solar capacity: batteries are especially interesting 

when energy must be stored for a few hours, so they complement solar technology. Finally, the system 

LCOE and the average power price are much more influenced by the cost of generation technologies 

than by that of storage technologies1.  

                                                           
1
 Schlachtberger et al. (2018) find nearly no effect of storage cost variation on the final cost of the electricity 

system, which is in accordance with our conclusions. 
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Figure 5. Optimization results over the 315 future cost projection scenarios. (a) power production and (b) installed capacity of 
each VRE resource; (c) load curtailment and storage losses; (d) required storage volume in GWhe for batteries and pumped hydro 
storage (d1)  and in TWhe for methanation (2); (e) system LCOE in €/MWhe; (f) average power price in €/MWhe. The green point 
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shows the reference cost scenario, the box plots show the first and third quartiles and the median for each scenario. The colored 
lines beside the whisker plots show the impact of varying the cost of one technology separately, keeping all other technologies 
at their reference cost. 

3.3. The cost of optimizing the power system on erroneous cost assumptions 

In the results presented so far we have assumed that the power system is optimized on the true set of 

technology costs. In reality, information about these costs will arrive gradually and part of the 

investment will have to be made before it has arrived. Being static, our model cannot represent this 

gradual arrival of information but it can represent the worst case, in which all the investment has to be 

made before the information arrives.  

The first step consists of selecting the power system which is the most robust to cost uncertainty. 

Calculating the robustness of each possible power system is not possible, but due to the linear nature of 

the model and to the symmetrical probability laws used to represent cost uncertainty, we might suspect 

that the most robust power system is that which minimizes the system LCOE in the reference cost 

scenario. To verify that this is the case, we have selected a subset of 10 out of our 315 cost scenarios, 

generating energy mixes that are contrasting and representative of those resulting from cost-

optimization in the 315 scenarios (Table 8).  

Table 8. Chosen scenarios and the future states in which these scenarios are optimal 

Scenario Offshore 
wind cost 
variation 

Onshore 
wind cost 
variation 

Solar PV 
cost 
variation 

Battery 
storage cost 
variation 

Methanation 
storage cost 
variation 

Optimal VRE mix % 
(offshore; onshore; PV) 

37 -25% -25% +50% -50% -50% 20; 60; 20 

48 0 -25% -50% -50% +50% 0; 50; 50 

52 0 -25% -50% +50% -50% 0; 60; 40 

69 0 -25% 0 0 +50% 0; 70; 30 

106 -25% 0 -25% +50% -50% 20; 40; 40 

115 -25% 0 0 +50% -50% 20; 45; 35 

124 -25% 0 +25% +50% -50% 20; 50; 30 

158 0 0 0 0 0 10; 50; 40 

231 0 +25% -50% 0 +50% 20; 20; 60 

277 +25% +25% -50% +50% -50% 0; 40; 60 

 

The regret value of each combination is calculated as the difference in total cost for each combination in 

each future state and the optimal mix in each future state. The percentage of regret is calculated by 

dividing these values into the total cost of the chosen scenario in the studied future state. Figure 6 

shows these regret values as percentages for each scenario in all 315 future states. 
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Figure 6. Regret percentage of each chosen combination in each future state; the box plots show the first and third quartiles and 
the median for each scenario, and red points show the mean value for each scenario 

As suspected, the power system resulting from optimization in the reference cost scenario (scenario 

158) brings the lowest mean regret, the lowest median regret, the lowest maximum regret and the 

lowest third quartile1. In other words, the certainty equivalence property applies. 

Hence we calculate the distribution of LCOE across our 315 cost scenarios, for a power system consisting 

of the installed capacities of generation and storage technologies optimized for the reference cost 

scenario (Figure 7). The average system LCOE is only 4% (less than €2/𝑀𝑊ℎ𝑒) more than when 

investment takes place after the arrival of information about costs; it equals the system LCOE under the 

reference cost scenario, positive and negative cost shocks cancelling out on average. 

                                                           
1
 Lempert (2006), Nahmmacher (2016) and Perrier (2018) have all used this third quartile to identify the most 

robust scenario. 
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Figure 7. Comparison of LCOE in a flexible installed capacity mix and a rigid installed capacity mix 

4. Discussion 

4.1. Comparison with existing studies 

Some authors have argued that the storage facilities required for a fully renewable power system would 

massively increase the power system cost (e.g. Sinn, 2017, whose conclusions have been challenged by 

Zerrahn et al., 2018).  In our reference cost scenario, storage (batteries, PHS and methanation) accounts 

for only 14.5% of the system cost, vs. 85.5% for electricity generation (Figure A.2 in Appendix 3). 

Moreover, we have seen that the system LCOE is much more robust to the cost of the storage 

technologies than to that of PV and wind. Hence the importance of the storage cost should not be 

overemphasized.  

The system LCOE for power generation and storage ranges from €36 to €65/𝑀𝑊ℎ𝑒, depending on 

technology costs, with an expected value between €50 and €52/𝑀𝑊ℎ𝑒, depending on whether the 

power system is optimized before or after the arrival of information about technology costs. According 

to the latest quarterly report from the French energy regulator (CRE, 2018), 35% of a typical electricity 

bill represents electricity production, hence from a bill varying between €160 and €170/𝑀𝑊ℎ𝑒, €56-

€60/𝑀𝑊ℎ𝑒 represents production. Hence the cost of a 100% renewable electricity system for France in 

2050 would be lower than or similar to that of the current power system.  

These results contrast with those of Krakowski et al. (2016) who find an annualized cost of more than 

€60 bn/yr. in their scenario 100RES2050 (cf. their Fig. 23) vs. €21 bn/yr. in ours. The explanation does 

not stem from their investment cost assumptions, which are similar to ours (cf. their Table 1). One 

explanation might be that they take a higher discount rate, but they do not disclose it so we cannot 

verify this hypothesis. Partial explanations are (i) a slightly higher power demand (cf. their Fig. 7: about 



 
 

24 
 

460 𝑇𝑊ℎ𝑒/yr. vs. 422); (ii) a slightly lower capacity factor for onshore wind (28%) and offshore wind 

(50%); (iii) the fact that they assume a perfect correlation between onshore and offshore wind 

production, which artificially limits the complementarity between these technologies. Moreover, they 

base their wind production profiles on observed power generation in 2012, which neglects the fact that 

advanced turbines generate electricity more constantly than those installed in the past (Hirth and 

Müller, 2016).  

Villavicencio (2017), who does not specify the time horizon considered, finds even higher annualized 

cost: more than €180 bn/yr. for 100% renewables, i.e. more than 8 times our result. Several factors may 

explain this huge difference. First, he takes a real discount rate of 7%/yr. This is much higher than ours, 

which corresponds to the rate recommended for socio-economic analysis in France (4.5%). Second, his 

investment cost for PV is much higher than ours: €3.6/𝑊𝑒, while the current investment cost at utility 

scale is around $1/𝑊𝑒 (Lazard, 2018)1. This explains why PV does not appear in his reference scenario 

(F1) with 100% renewables. Third, total demand is higher than ours (512 𝑇𝑊ℎ𝑒 vs. 422𝑇𝑊ℎ𝑒). 

To sum up, while our results point to a much lower system cost than the two above-mentioned studies 

modeling a 100% renewable system for France, there are good reasons to conclude that the system cost 

for 2050 will be lower than that estimated by these studies. In the remainder of this subsection, we 

address several factors in turn which could push our estimates up or down. 

4.2. Factors which could push costs up  

4.2.1. Cost of the transmission and distribution network 

Our system LCOE includes storage and connection of power generation to the grid, but not the cost of 

the transmission and distribution network. Currently this cost accounts for 27% of the typical electricity 

bill, i.e. about €45/𝑀𝑊ℎ𝑒. Calculating this cost for the various power systems considered in the present 

study would exceed the scope of the present article, but several recent studies indicate that the cost 

differential across scenarios featuring greater or lesser percentage of renewables would be limited. 

 According to the RTE systems and network perspectives study (2018), for a 71% renewable 

electricity mix (the so-called Watt scenario for 2035) in France, the extra network costs would be in 

the order of €1 bn/yr., less than 5% of the total production cost. However, the relationship is not 

linear and it cannot be easily extrapolated for higher proportions of renewables.  

 According to two studies by ADEME (2015, 2018), the cost of renovating the French network, which 

is planned to take place before 2030, will be at least one order of magnitude more than the cost 

required to strengthen the grid for a fully renewable power network.  

 According to EirGrid2 (the Irish electricity network operator), for an electricity mix with nearly 90% 

of renewables, the reinforcement required to integrate VREs will cost no more than €1/𝑀𝑊ℎ𝑒.  

                                                           
1
 A more recent article by the same author features a much lower investment cost parameter for PV: €0.71/W but 

does not provide simulations with 100% renewable energy (Villavicencio and Finon, 2019). 
2 http://www.eirgridgroup.com/newsroom/record-renewable-energy-o/index.xml 

http://www.eirgridgroup.com/newsroom/record-renewable-energy-o/index.xml
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4.2.2. Acceptability of wind power 

Our optimal scenario corresponding to the reference technology costs includes about 80 GW of onshore 

wind, 12 GW of offshore wind and 110 GW of PV. The availability of land for PV does not appear to be 

problematical since the amount of suitable land is much higher than required (Cerema, 2017). For 

offshore wind, WindEurope’s “high” scenario for 2030 forecasts 11 GW, roughly equivalent to our 

optimal scenario corresponding to the reference technology costs. Here again, reaching this capacity 

does not seem problematical. 

For onshore wind, WindEurope’s (2017) “high” scenario forecasts 41 GW in 2030, vs. 14 in 2018, i.e. an 

increase of 2.2 GW/yr. on average. Reaching 80 GW in 2050 means an increase of 2 GW/yr. on average, 

from 2018 onwards, a bit less than WindEurope’s “high” scenario, but almost twice the current rate of 

increase. Sustaining such a high rate of increase requires a high degree of political determination, given 

the current opposition faced by many wind projects in France. 

4.2.3. Discount rate 

Some studies use higher discount rates than ours, e.g. 7% in Villavicencio (2017), as mentioned above. 

This would increase the annualized LCOE, and especially the cost of capital-intensive technologies. While 

higher rates may well be used by private companies, 4.5% is already much higher than both the rate-

free real interest rate available on financial markets, and expected GDP growth over the next few 

decades. Using a higher rate in a socioeconomic analysis means than future generations would be 

penalized when compared to current ones, which can hardly be defended on ethical grounds. 

4.2.4. Perfect weather forecasts 

Our optimization has been conducted on the assumption that the weather is known for the whole 

period. With imperfect weather forecasts, the cost would be higher, but such an optimization for a 

country-scale system would be computationally challenging.  Gowrisankaran et al. (2016) have 

performed such an optimization just for solar energy, on a limited geographical scale, and have found 

that “intermittency overall is quantitatively much more important than unforecastable intermittency.” 

However, whether this conclusion would hold for a complex, multi-energy system is an open question. 

4.3. Factors which could bring costs down  

4.3.1. Demand-side management 

Our model does not feature price-elastic electricity demand or flexibility in the power consumption 

profile, because this would have required debatable assumptions. Moreover, the demand profile, taken 

from ADEME (2015), is already flatter than the current one. Including these features would reduce the 

need for storage and the related energy losses. 
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4.3.2. Interconnection with neighboring countries 

Many studies have shown that interconnections with neighboring countries can significantly reduce the 

cost of a fully renewable system. For instance, Annan-Phan and Roques (2018) have shown that power 

price volatility can be reduced by cross-border exchanges with neighboring countries. Indeed this leads 

to benefits from the differences both in climatic and weather conditions between the countries 

concerned. 

4.3.3. Spatial optimization of renewable energy capacities 

As mentioned above, we do not optimize the quantity of renewables at every location but only the 

aggregate capacity, which is thus scaled up compared to the value observed in 2017. A lower system 

cost would be obtained by optimizing their location, which would presumably lead to greater capacity in 

windier or sunnier locations, although this effect would be mitigated by the need to obtain a flatter 

aggregate generation profile. Yet this would make the model computationally intractable and might lead 

to unrealistic concentrations of onshore wind in some locations.  

4.3.4. Neither vehicle-to-grid nor second-hand batteries 

We have not taken into account vehicle-to-grid i.e. the possibility that electric vehicle batteries could be 

used to provide flexibility in the electricity system. Yet the storage capacity of electric vehicles may be 

huge by 2050: The French TSO RTE (2018) estimates it at 900 𝑇𝑊ℎ𝑒, about ten times the battery 

capacities in our reference cost scenario. Mobilizing even a small part of this capacity for power storage 

would bring down the system LCOE, but we have preferred not to include this option because the 

impact on battery lifetime is still being debated. Another possibility is to recycle used car batteries as 

stationary batteries, but again, we believe that modeling this option would require precise assumptions 

on battery degradation. 

5. Conclusion 

We have developed EOLES, a model optimizing investment and dispatch in the power sector, and 

applied it to the study of fully renewable power systems in France. We have shown that the energy mix 

depends strongly on the chosen weather-year, so this year should be chosen carefully considering a 

longer period of weather data. Having selected a representative year, we built 315 cost scenarios by 

combining assumptions about the long-term cost of the key power generation and storage technologies. 

We find that the system levelized cost of electricity, including generation and storage, ranges from €36.5 

to €65.5/𝑀𝑊ℎ𝑒, depending on the cost scenario, with an average value of €50/𝑀𝑊ℎ𝑒. This average 

value is based on the assumption that the energy mix is optimized after the arrival of information on 

technology costs; if instead we assume that all investment must take place before knowing the true cost 

scenario, the average system LCOE is only 4% (€2/𝑀𝑊ℎ𝑒) higher. 

The main takeout message from this uncertainty analysis is thus that even though the technologies 

involved in a fully renewable power system are very different, they are by and large substitutable. For 

instance, if batteries are 50% more expensive than expected, the optimal energy mix includes fewer 
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batteries and less PV, but this is compensated for by additional windpower, with a very limited impact 

on the system LCOE. On the contrary, if windpower is 25% more expensive than expected, the optimal 

mix obviously includes less of this technology, but this is compensated for by more PV and storage.  

In addition, our analysis shows that the optimal power mix is highly sensitive to the chosen weather-

year and to the cost assumptions. In the literature, many analyses of the power mix are still based on a 

unique weather-year, chosen for data availability rather than representativeness. Our result thus calls 

for caution over such conclusions on the optimal power mix, when they are based on a limited number 

of weather-years or cost scenarios.  

Finally, the cost of storage should not be overestimated:  in our reference cost scenario, storage 

(batteries, PHS and methanation) accounts for only 14.5% of the system cost, vs. 85.5% for electricity 

generation. Were our model to include demand-side management, interconnections with neighboring 

countries, vehicle-to-grid or second-hand batteries, the cost of storage would be even lower. 

This work could be extended in many directions, for example including the other power generation 

technologies that entail low direct CO2 emissions: CO2 capture and storage and nuclear power. Their 

cost and the possibility of storing massive quantities of CO2 being very uncertain in the French context, 

we decided not to include them in the present study, but they could be considered in future work.   
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Appendix 1. Additional information on the JRC 2017 study 

In this JRC report, historic installed capacity of each technology for 2015, learning rate related to each 

technology and the capital investment cost of each technology in 2015 has been taken as input values, 

and using three different future installed capacity scenarios, three different future cost trajectories are 

proposed. Equation (A1) shows the main methodology used in the cost projection using the learning 

rate method: 

𝐶𝑜𝑠𝑡𝑡  =  𝐶𝑜𝑠𝑡0 ∙  (
𝐶𝑡

𝐶0
)

𝛿
  (A1) 

This log-linear relation relates the future cost (𝐶𝑜𝑠𝑡𝑡) of a technology to the existing cost (𝐶𝑜𝑠𝑡0), 

existing installed capacity (𝐶0) and the future projected installed capacity (𝐶𝑡) of it using the experience 

parameter 𝛿. The learning rate LR is related to the experience parameter as it is described in equation 

(A2); 

𝐿𝑅 = 1 −  2𝛿  (A2) 

The JRC report uses three different scenarios to project the future installed capacity of each technology, 

and finally to find the 
𝐶𝑡

𝐶0
 ratio for the equation (16). These three scenarios are described in Table A-1; 

Table A-1 the chosen scenarios by JRC for the 2050 cost projections of low carbon power production technologies 

Scenario  

Baseline This scenario is used to cover the lower end of RES-E deployment. It is based on the "6DS" 
scenario of the Energy Technology Perspectives published by the International Energy Agency in 
2016. It represents a "business as usual" world in which no additional efforts are taken on 
stabilizing the atmospheric concentration of greenhouse gases. By 2050, primary energy 
consumption reaches about 940 EJ, renewable energy supplies about 30 % of global electricity 
demand and emissions climb to 55 GtCO2. 

Diversified The "Diversified" portfolio scenario is taken from the "B2DS" scenario of the International Energy 
Agency's 2017 Energy Technology Perspectives and is used as representative for the mid-range 
deployment of RES-E found in literature. To achieve rapid decarbonization in line with 
international policy goals, all known supply, efficiency and mitigation options are available and 
pushed to their practical limits. Fossil fuels and nuclear energy participate in the technology mix, 
and CCS is a key option to realize emission reduction goals. Primary energy consumption is 
comparable to 2015 levels (about 580 EJ), the share of renewable electricity in the global supply 
mix is 74 % while emissions decline to about 4.7 GtCO2 by 2050. 

ProRES The "ProRES" scenario results are the most ambitious in terms of capacity additions of RES-E 
technologies. In this scenario the world moves towards decarbonization by significantly reducing 
fossil fuel use, however, in parallel with rapid phase out of nuclear power. CCS does not become 
commercial and is not an available mitigation option. Deep emission reduction is achieved with 
high deployment of RES, electrification of transport and heat, and high efficiency gains. It is based 
on the 2015 "Energy Revolution" scenario of Greenpeace. Primary energy consumption is about 
430 EJ, renewables supply 93 % of electricity demand and global CO2 emissions are about 4.5 
GtCO2 in 2050. 

 

The used economical parameters for the power production technologies are taken from the 2050 

projections of this study for the diversified scenario as an average and more realistic scenario.  
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Appendix 2. Wind and solar production profiles 

The wind power hourly capacity factor profiles existing in the renewables.ninja website are prepared in 

four stages:  

a) Raw data selection; using NASA’s MERRA-2 data reanalysis with a spatial resolution of 60km×70km 

provided by Rienecker et al. (2011), 

b) Downscaling the wind speeds to the wind farms; by interpolating the specific geographic coordinates 

of each wind farm using LOESS regression,  

c) Calculation of hub height wind speed; by extrapolating the wind speed in available altitudes (2, 10 and 

50 meters) to the hub height of the wind turbines using logarithm profile law,  

d) Power conversion; using the primary data from Pierrot (2018), the power curves are built (with 

respect to the chosen wind turbine), and smoothed to represent a farm of several geographically 

dispersed turbines using Gaussian filter. 

The solar power hourly capacity factor profiles in the renewables.ninja website are prepared in three 

stages: 

a) Raw data calculation and treatment; using NASA’s MERRA data with the spatial resolution of 

50km×50km. The diffuse irradiance fraction estimated with Bayesian statistical analysis introduced by 

Lauret et al. (2013) and the global irradiation calculated in inclined plane. The temperature is given at 

2m altitude by MERRA data set.  

b) Downscaling of solar radiation to farm level; values are linearly interpolated from grid cells to the 

given coordinates. 

c) Power conversion model; Power output of a panel is calculated using the relative PV performance 

model by Huld et al. (2010) which gives temperature dependent panel efficiency curves. 
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Appendix 3. Additional results 

The results for each weather-year can be seen in Tables A.1, A.2, A.3 and Figure A.1; 

 

Figure A.1 VRE generation mix for each weather-year in single-year optimization and over the whole 18-year long period 

Table A.1 installed capacity of each power production technology in GWe and energy storage capacity of each storage 
technology during each optimization period  

Weat
her-
year 

Offshore 
Wind 

Onshore 
Wind 

Solar 
PV 

Run-of-
river 

Lake & 
reservoir 

Biogas Battery 
(GWh) 

PHS 
(GWh) 

Methanation 
(TWh) 

2000 11.46 84.14 105.74 7.50 13.00 18.24 60.17 180 5.52 

2001 0.38 104.62 101.16 7.50 13.00 28.61 41.91 180 8.45 

2002 17.12 69.66 105.55 7.50 13.00 19.16 74.70 180 4.60 

2003 10.21 90.15 106.83 7.50 13.00 25.70 62.78 180 5.52 

2004 0.00 105.29 113.38 7.50 13.00 21.88 70.32 180 15.30 
2005 0.00 105.89 110.38 7.50 13.00 25.22 60.27 180 9.37 

2006 12.36 80.08 122.17 7.50 13.00 32.89 74.62 180 12.90 

2007 0.00 98.40 118.33 7.50 13.00 27.61 65.73 180 12.05 

2008 0.78 101.95 105.20 7.50 13.00 21.76 52.03 180 12.05 

2009 11.61 89.32 107.79 7.50 13.00 18.83 51.47 180 6.92 

2010 20.00 83.64 100.50 7.50 13.00 22.88 40.53 180 15.81 
2011 20.00 65.81 114.17 7.50 13.00 28.32 101.33 180 8.54 

2012 0.00 103.38 114.49 7.50 13.00 20.36 62.43 180 11.32 

2013 10.32 92.30 100.82 7.50 13.00 21.54 37.06 180 10.59 
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2014 20.00 70.23 111.40 7.50 13.00 18.57 80.03 180 7.69 

2015 20.00 64.77 103.78 7.50 13.00 34.09 63.19 180 8.22 

2016 20.00 69.77 114.07 7.50 13.00 23.96 81.68 180 8.66 

2017 5.29 100.72 111.62 7.50 13.00 19.30 50.05 180 11.77 
Mean 9.97 87.78 109.30 7.50 13.00 23.83 62.79 180 7.74 

All 11.77 83.30 112.21 7.50 13.00 33.25 66.71 180 16 

 

Table A.2 Yearly power production of each production technology (in TWh) and capacity factor of VRE resources 

Weat
her-
year 

Offshore 
Wind  

Onshore 
Wind 

Solar 
PV 

Run-of-
river 

Lake & 
reservoir 

Biogas Offshore 
Wind 

Onshore 
Wind 

Solar 
PV 

OCGT 
plant 

2000 54.08 246.41 146.58 29.19 15.82 15 0.538 0.334 0.158 0.139 

2001 1.77 307.32 143.64 29.19 15.82 15 0.537 0.335 0.162 0.089 

2002 82.05 121.44 145.52 29.19 15.82 15 0.547 0.348 0.157 0.127 
2003 44.99 245.26 153.46 29.19 15.82 15 0.503 0.311 0.164 0.088 

2004 0.00 296.53 159.65 29.19 15.82 15 0.509 0.322 0.161 0.130 

2005 0.00 290.19 159.98 29.19 15.82 15 0.507 0.312 0.165 0.102 

2006 56.90 227.80 173.72 29.19 15.82 15 0.525 0.324 0.162 0.087 

2007 0.00 294.71 170.24 29.19 15.82 15 0.532 0.341 0.164 0.100 
2008 3.67 296.22 145.50 29.19 15.82 15 0.536 0.331 0.158 0.120 

2009 51.41 246.86 153.65 29.19 15.82 15 0.504 0.315 0.162 0.130 

2010 88.51 226.65 140.74 29.19 15.82 15 0.505 0.308 0.160 0.130 

2011 91.47 179.83 165.84 29.19 15.82 15 0.522 0.311 0.165 0.085 

2012 0.00 294.01 164.07 29.19 15.82 15 0.523 0.326 0.163 0.130 
2013 48.17 259.67 138.87 29.19 15.82 15 0.533 0.320 0.157 0.128 

2014 89.18 193.92 153.49 29.19 15.82 15 0.509 0.314 0.157 0.133 

2015 96.26 190.85 148.57 29.19 15.82 15 0.549 0.335 0.163 0.072 

2016 88.09 187.04 160.28 29.19 15.82 15 0.502 0.302 0.160 0.101 

2017 23.35 272.47 160.58 29.19 15.82 15 0.504 0.309 0.164 0.135 
Mean 45.55 248.23 154.69 29.19 15.82 15 0.522 0.323 0.161 0.113 

All 53.79 235.53 158.75 29.19 15.82 15 0.522 0.323 0.161 0.079 

 

Table A.3 shows the total cost, marginal cost and the system LCOE1 for each yearly optimization and for 

the whole 18-year long optimization.  
Table A.3 Total cost, average marginal cost (average spot price), levelized cost of electricity, load curtailment and storage 
related losses of each year 

Weat
her-
year 

Total 
Cost (b€) 

System LCOE 
(€/MWh) 

Market price 
(€/MWh) 

Load 
Curtailment 

Storage 
losses 

Curtailment 
+ loss 

2000 20.23 47.89 53.83 11.64 5.06 16.70 

2001 20.44 48.40 54.20 12.76 4.87 17.63 

2002 19.77 46.82 54.60 10.90 4.62 15.12 

2003 20.83 49.31 54.21 12.38 3.76 16.14 

2004 21.33 50.51 56.91 11.75 6.43 18.18 

2005 21.04 49.81 54.18 11.94 5.26 17.20 

2006 21.82 51.65 56.46 11.99 6.53 18.52 

                                                           
1
 System LCOE (levelized cost of electricity) is an economic assessment of the average total cost to build and operate an electricity system over 

its lifetime divided by total electricity consumption over that lifetime.  
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2007 20.87 49.40 55.59 13.40 6.14 19.54 

2008 20.19 47.81 55.23 11.27 5.16 16.43 

2009 20.71 49.02 54.72 13.02 4.47 17.49 
2010 21.91 51.87 57.29 11.83 6.30 18.13 

2011 21.06 49.85 54.43 10.30 4.74 15.04 

2012 20.87 49.41 54.81 12.67 5.80 18.47 

2013 20.82 49.28 55.47 10.63 6.01 16.64 

2014 20.68 48.95 56.90 10.10 4.84 14.94 

2015 20.29 48.04 54.18 10.12 4.66 14.78 

2016 21.00 49.72 56.46 10.07 4.67 14.74 

2017 21.13 50.03 55.43 12.95 5.26 18.21 

Mean 20.83 49.32 55.27 11.65 5.25 16.90 

All 21.33 50.50 56.01 11.52 5.34 16.86 

 

Figure A.2 shows the share of each technology in overall cost of power system (except distribution and 

transmission costs); 

 

Figure A.2. Overall decomposition of the system cost in the reference cost scenario 

Table A.4 shows the ranking of each weather-year in correlation with overall 18-year period. 

Table A.4 Closest years to the overall 18-year period regarding to the capacity factor of VRE resources 

 Closest year Second closest year Third closest year 

Offshore Wind 2011 2012 2006 

Onshore Wind 2006 2004 2012 

Solar PV 2004 2006 2009 

Overall year 2006 2012 2004 

Overall error (absolute) 0.0150 0.0236 0.0280 
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