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Catastrophes that are triggered by a stock variable exceeding a tipping point are

relevant in many fields of economics and biology. If market size is unknown, demand

may tip after excessive entry to the market (Rob, 1991).1 The introduction of a new

technology may promise efficiency improvements but can also entail additional risks that,

if materializing, can result in a breakdown of the market (Bonatti and Hörner, 2016).

Because of climate change, the Greenland and the Antarctic Ice Sheets may melt leading

to a rise in the sea level if temperatures are to rise above a threshold that is unknown

to us (Kriegler et al., 2009; Naevdal, 2006). Fisheries and ecosystems may collapse when

their size are reduced below a threshold (Polasky et al., 2001). Rockström et al. (2009)

document nine potential tipping points for our planet.

All such situations can be conceptualized through a state variable triggering tipping

when it takes values above a threshold. Typically the precise value of this threshold is un-

known, reflecting scientific uncertainty or stochastic shocks. Moreover, once the tipping

point is reached the catastrophe may only happen in the future after a considerable delay.

For example, it has been argued that habitat fragmentation leads to an extinction debt

that may take decades or even centuries to materialize, with the gradual extinction of

numerous species (Tilman, 1994). Hence inference about catastrophes is difficult before

they actually happen – and it is too late for cautious management once a catastrophe

has happened. This paper studies such situations in a very simple but general model

that can be thought of as a stylized model of environmental tipping points such as those

related to climate change or ecosystems collapse. In this setting, we deliver results that

generalize beyond these particular applications.

At any point in time a catastrophe might well be under way. The question we ask

is whether such delays make the planner more or less cautious. Should, for example, in

climate change temperature be stabilized until we are pretty sure we are on the safe side

of the distribution, or do delays encourage more intensive experimentation? To answer

this question, we develop a model of experimentation where the planner controls a flow

variable (e.g., consumption) that contributes to a stock (e.g., greenhouse gases). An

experiment is an increase in the stock variable. In contrast with the standard tipping

point or threshold models (discussed below), the experiment is informative only with a

1There is also intensive research on macroeconomic disasters corresponding a large downward jump
in GDP growth with unknown size and recovery time (Barro, 2006; Gouriou, 2008). However, learning
dynamics is not the main focus of this research but rather how a given process generating catastrophes
impacts the macroeconomic aggregates such as asset prices.
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delay: each increase in the stock may or may not trigger the event and this becomes

known to the planner as time goes by.

Consider a planner who stabilizes the stock and thereby stops experimenting. The

past experiments have payoff implications only in the future, implying that even after

stabilization the planner is continuously learning. Over time, the planner becomes more

optimistic since past experiments do not seem to have triggered a catastrophe so far.

The implications for policies that follow from this feature are unique, allowing us to

draw lessons for different types of planning situations for catastrophes. For example,

the ultimate end of experiments (stock stabilization) depends on initial beliefs on if a

catastrophe is under way. Intuitively, the beliefs determine the risk of following the future

experimentation path. In our model, the initial beliefs explicitly depend on the timing

of historical experiments, and therefore the entire solution becomes history-dependent.

Using specific examples, we show that a planner inheriting a more favorable history (more

optimistic beliefs) is more cautious in the long run and experiments less in total. Such a

planner can have more to lose than a planner who is almost sure that tipping has been

triggered already.

The optimal policies are quite naturally nonmonotonic in this setting. Because the

damage in case a catastrophe happens at time t is a function of the stock at the very

same time t, the delay introduces an additional incentive to reduce the stock, so as to

reduce the damage in case tipping was triggered in the past. However, no news is good

news, so that by decreasing the stock the planner does not experiment and, conditional

on not observing the event, becomes more optimistic over time that past increases in the

stock did not trigger tipping. After some time, the planner must be willing to increase

the stock again as he becomes almost sure that the way back to the initial stock level is

safe.

Delays in learning are not only a source of caution, quite the opposite result can

follow. The fact that all impacts are delayed contributes positively to welfare because of

discounting: any given experiment is costly only in the future, so that the planner enjoys

a benefit from living on “borrowed time”. Therefore, the effect of introducing delays is

to make catastrophes look more benign, and this tends to favor experimentation.

These results are new in the literature. Let us first remind two approaches that have

been extensively used in the past literature to model the arrival of catastrophes. In the

first approach, one may conceptualize the system under pressure as a machine: the more
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pressure is put, the more likely is the breakdown. The probability of the catastrophe

happening during the next (short) period only depends on the current state of the sys-

tem, through an exogenously assumed hazard rate function. This Markovian assumption

features in many important recent applied papers, for example in the quantitative as-

sessments of the optimal climate-change policies in Cai et. al. (2013) and Lontzek et

al. (2015); for more stylized developments and other applications, see Clarke and Reed

(1996), Polasky et al. (2011), and, for example, Sakamoto (2014). In this approach,

delays are not taken into account, and the past history does not matter.

In the second approach, one introduces an unknown tipping point, or threshold, that

the state variable should not exceed, otherwise a catastrophe immediately occurs. This

approach originates back to Tsur and Zemel (1995, 1996), and it has been recently

used in a quantitative assessment of the optimal climate-change policies (Lemoine and

Traeger, 2014). In the absence of delays, experimenting with the thresholds is extremely

informative: the planner is 100% certain that the threshold has not been exceeded if

no catastrophe has occurred so far, a feature that matches the facts in most learning

environments quite badly. For example, Roe and Baker (2007) argue forcefully that the

delays built into the feedback mechanisms governing climate change will prevent us from

learning the true nature of the problem in the coming decades. By contrast, in such

threshold models the past history impacts the present only through the maximum level

of the stock reached in the past: beliefs are simply truncated from below to exclude the

thresholds’ values lying below this maximum level.

Both approaches have their virtues. But the choice between them should not be

made casually, as rather different outcomes can follow in applied quantitative works. For

example, in Lontzek et al. (2015) the risk of a tipping point has qualitatively almost

orthogonal implications for the optimal climate policy than in Lemoine and Traeger

(2015).2 One also has to keep in mind that in both approaches the impact of past history

is reduced to a minimum.

Our approach is also different from the workhorse models (bandit models) used to

study experimentation in various economic settings. As in Poisson bandit models, from

not observing the event the planner updates beliefs on the arrival rate of a catastrophe

2However, one must bear in mind that quantitative assessments can differ in multiple dimensions. See
Gerlagh and Liski (2016) for a more detailed discussion of the assumptions made in these two studies.
One important difference is that in Lemoine and Traeger there is a finite support for the tipping point
whereas in Lontzek et al. the hazard rate remains bounded.
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(Malueg and Tsutsui, 1997; see also Keller, Rady, Cripps, 2005 and Bonatti and Hörner,

2011). However, because of delays the current beliefs explicitly depend on the timing of

past experiments, and not only on the maximum threshold reached in the past. Another

difference with typical bandit models is that the stock variable also has direct payoff

implications; after all, the post-event penalty in most tipping point applications depends

on how much pressure was put on the system during the experimentation.3 In a bandit

formulation, choosing no action (e.g., R&D effort) implies no change in the beliefs that the

planner is holding.4 In our formulation, the past experiments have payoff implications

only in the future, implying that even after stabilization the planner is continuously

learning, which is the feature leading to non-monotonic policies.

1 Model

Time t is a continuous variable. The planning date is t = 0, but the full past history

will be relevant and thus we let t ∈ (−∞,∞). Let Qt denote a stock variable. An action

qt ∈ [q, q], with q < 0 < q, allows to control the stock according to the following law of

motion:

Q̇t = qt.

The planner in charge of managing this dynamic system also faces the possibility of

a catastrophe. We say that a catastrophe is triggered when the stock Q exceeds a given

threshold value S. Given a path (Qt)t∈(−∞,+∞), the triggering time is a function of the

threshold S:

T (S) ≡ inf{t : Qt > S}. (1)

Note that T (S) is infinite if the stock never exceeds S, and that QT (S) = S otherwise.

We also define the record stock at time t:

Qt ≡ max
t′≤t

Qt′

so that T (S) < t if and only if S < Qt. The catastrophe itself occurs only after a delay

τ ≥ 0, thus at date κ = T (S) + τ . Before κ, the instantaneous utility is u(q,Q), and it

is discounted at the rate δ > 0. We thereby allow for the stock level to directly impact

3Our setting is therefore more complicated than the standard Poisson bandits setting, which is why
we concentrate on the case of a single decision-maker in this paper.

4This property is necessary for the Gittin’s index policy characterization in bandit problems; see
Bergemann and Välimäki, 2009.
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payoffs. At time κ, the catastrophe occurs, and the game stops, with the planner receiving

a stopping payoff V (Qκ) that depends on the value of the stock at the catastrophe date.

This means that the planner can mitigate the impact of a catastrophe by changing the

level of the stock after the catastrophe was triggered, but before it occurs. Making the

stopping payoff V instead depend on the threshold stock S, or on the maximum level

tried in the past Qκ, would eliminate this possibility by assumption. To illustrate, one

may imagine a skater on thin ice. Immediate utility flow increases with the distance

from the shore, but the ice gets thinner and thinner. Once the first crack in the ice has

appeared, the skater may turn back as long as the ice is still holding. When the ice

finally breaks, the damage to the skater depends on the remaining distance to the shore,

as assumed in the model.

Overall, given S, τ , and a path (Qt)t∈(−∞,+∞), one can apply (1) to compute T (S)

and κ = T (S) + τ , so that the planner’s payoff from date t = 0 onward equals∫ κ

0

u(qt, Qt) exp(−δt)dt+ exp(−δκ)V (Qκ).

We now introduce uncertainty in this model. First, the threshold value S is uncertain

to the planner, who entertains prior (at time t = −∞) beliefs characterized by a cdf F

on the interval [S, S]. Second, the delay τ is also uncertain: it is drawn in a Poisson

distribution with parameter α > 0, independently from S. Hence the planner is not

only unsure of the value of the tipping point, but also about whether the threshold has

already been passed; this last feature is new in the literature. It captures the idea that

a catastrophe might well be under way, though no one knows. This ignorance precludes

a precise adoption of preventive measures, possibly making the catastrophe even worse.

In the biology literature, concepts like the extinction debt correspond to this idea.

To write the planning problem at time 0, we define initial conditions as the chronicle of

past stocks (Qt)t≤0. Beliefs at time zero are obtained by conditioning the prior beliefs by

the event “no catastrophe happened until time zero”, or equivalently κ = T (S) + τ ≥ 0.

Therefore, given (Qt)t≤0, the planner’s problem is as follows:

max
(qt,Qt)t>0

E

[∫ κ

0

u(qt, Qt) exp(−δt)dt+ exp(−δκ)V (Qκ)

∣∣∣∣ κ ≥ 0

]
(2)

Q̇t = qt ∈ [q, q], T (S) = inf{t : Qt > S}, (Qt)t≤0 given. (3)

We allow for jumps in q, as long as they do not threaten measurability. We say that

a path (Qt) is monotonic if Qt is everywhere weakly decreasing, or weakly increasing,

5



with time. We now turn to some specific assumptions, then offer a few examples, before

developing a tractable approach to solving (2)-(3).

1.1 Assumptions and Notations

There are only three primitive elements in this model, that we study in turn: functions

u(q,Q) and V (Q), and distribution F . To begin with, we assume:5

Assumption 1 Function u is twice differentiable, bounded from above, and weakly con-

cave in q. Moreover, the function

ν(Q) ≡ uq(0, Q) +
uQ(0, Q)

δ

is weakly decreasing with respect to Q.

Note that whether an increase in Q is good news or bad news is left unrestricted, so as

to fit various settings. Function ν encapsulates the trade-off between instantaneous gains

from an increase in q, and effects due to the associated increase in Q in all subsequent

periods. ν is decreasing for any positive δ if one assumes both uQQ ≤ 0 and uqQ ≤ 0, but

the above formulation highlights which property is really needed. To avoid discussing

multiplicities, we also assume that there exists a unique solution Q∗ ∈ [−∞,+∞] to the

equation ν(Q) = 0. Note that Q∗ need not be finite.

As a benchmark, we now define the No-Catastrophe Problem (NCP), as the case in

which catastrophes do not occur. In the NCP, the planner maximizes∫ +∞

0

u(qt, Qt) exp(−δt)dt (4)

under Q̇t = qt, Q0 given. As time enters only through geometric discounting, the problem

is said to be autonomous. Lemma A.1 in the Appendix studies this problem and shows

it admits a monotonic solution. The monotonicity of ν implies that for this solution, the

planner chooses to gradually increase (if Q0 < Q∗) or reduce (if Q0 > Q∗) the stock until

it reaches the level Q∗.

We define catastrophes as costly, irreversible events. Irreversibility means that the

continuation value V is fixed, and beyond the control of the social planner. The catas-

trophe is costly if V is less than the value of forever stabilizing the stock at a safe level.

5Subscripts denote partial derivatives.
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We therefore define the damage function D as

D(Q) ≡ u(0, Q)

δ
− V (Q)

and we assume:

Assumption 2 The damage function D(Q) is continuously differentiable, weakly posi-

tive, weakly increasing, and weakly convex.

In particular, this assumption implies that V is bounded from above. Finally, let the

c.d.f. F be continuously differentiable on its support [S, S], with density f . We adopt a

monotone hazard rate assumption:

Assumption 3 The hazard rate ρ(Q) ≡ f
1−F (Q) is weakly increasing.

1.2 Examples

The setting covers multiple interpretations, in addition to the skater’s adventures sketched

above. It is formulated to fit the management of a stock of pollution, such as carbon

dioxide. Or one may instead think to a fishery, with obvious changes in signs; q is then

interpreted as the catch from the stock. As in many stylized pollution-control models,

the stock may follow the law of motion

Q̇t = et − γQt.

By the change of variable q = e− γQ, we are back to our model. The utility v(e,Q) now

becomes u(q,Q) = v(q + γQ,Q), and Assumption 1 holds for example if v is concave,

with a negative cross-derivative.

The model can also be applied to the management of debt. A borrower allocates his

revenue w between consumption c (yielding a utility U(c), assumed concave) and net

savings s, with w = c + s. His debt Q commands interest payments rQ. The law of

motion of debt is thus

Q̇t = rQt − st.

The change of variable q = rQ− s yields Q̇ = q, as in our model. Moreover, one has

c = w + q − rQ, so that utility u(q,Q) ≡ U(w + q − rQ) is indeed a function of both

q and Q. Then ν(Q) = (1 − r/δ)U ′(w − rQ), and thus Assumption 1 holds if r > δ.
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Finally, the lender triggers bankruptcy when debt exceeds some uncertain level S, and

liquidation occurs after some stochastic delay. Quite naturally, the continuation payoff

after liquidation is computed as a function V (Qκ) of the debt level at the liquidation date

κ. Note that in the NCP, liquidation never occurs by assumption, but interest charges

have to be paid. Because r > δ, the borrower should reduce its debt as fast as he can.

Indeed, ν is negative everywhere, and therefore the desired level of the debt is Q∗ = −∞.

Whether this conclusion also holds when liquidation is allowed after an (uncertain) delay

is studied in this paper.

Finally, we study in section 5 a linear model in which consumption q is always ben-

eficial, and does not create any damages. Therefore, in the NCP the planner should

consume as much as he can, and we have Q∗ = +∞. Introducing catastrophes leads to

richer conclusions, as we shall see.

2 Restating the problem

Recall that it is the premise of planning that no catastrophe has happened at time t = 0.

Given a path (Qt)t∈(−∞,+∞), let us now define the survival probability at time t, computed

at the beginning of times using the prior beliefs F :

pt ≡ Prob(κ ≥ t).

One may distinguish two possibilities. Either S is above Qt, and in that case a catas-

trophe cannot happen before time t. Or S is below Qt, which means that a catastrophe

was triggered at time T (S) < t, but did not happen before time t because the delay τ is

above t− T (S). Overall, we obtain

pt = 1− F (Qt) +

∫
S<Qt

exp(−α(t− T (S)))dF (S). (5)

The second term measures the possibility that a catastrophe was triggered in the

past, but did not happen yet. It is high if the record stock has been increasing quickly

in the recent past, and low otherwise. The share πt of this term in pt can be interpreted

as measuring the legacy from the past, compared to potential threats from the future:

1− 1− F (Qt)

pt
≡ πt ∈ [0, 1]. (6)

The survival probability can also be expressed as follows. At time 0 we have

p0 = 1− F (Q0) +K,
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where

K ≡
∫
S≤Q0

exp(αT (S))dF (S)

is the probability that a catastrophe has been triggered before time 0, but did not happen

yet. We complement these by the law of motion:

ṗt = α[1− F (Qt)− pt]

which indeed allows us to recover (5). Hence, in any case pt is above (1−F (Qt)), because

past experiments may have triggered a catastrophe; and pt is nonincreasing, without

surprise since it is a survival probability. One important limit case is when delays are nil

(α goes to infinity), so that catastrophes occur as soon as they are triggered. Then pt

is everywhere equal to (1− F (Qt)), and the legacy from the past πt is zero everywhere.

Otherwise, if delays exist (α < +∞), then either planning starts with no experimentation

in the history: Q0 ≤ S, π0 = 0, and p0 = 1. Or the planner inherits some experiments

from the past: Q0 > S, and then one has πt > 0 and pt > 1 − F (Qt) forever, as it is

always possible that a catastrophe was triggered in the past but did not occur yet.

We now know the cumulative density function (1 − pt) of the catastrophe date κ.

Conditioning on the event κ ≥ 0 amounts to divide this cdf by p0, and therefore does not

alter the maximization problem. The expected payoff (2) can be written as follows:

E

[∫
t≥0

1κ≥tu(qt, Qt) exp(−δt)dt+ exp(−δκ)V (Qκ)

]

=

∫
t≥0

[E1κ≥t]u(qt, Qt) exp(−δt)dt+

∫
κ≥0

exp(−δκ)V (Qκ)d(1− pκ).

By relabelling κ into t in the second term, we end up with the following problem:

max

∫ ∞
0

[ptu(qt, Qt)− ṗtV (Qt)] exp(−δt)dt (7)

Q̇t = qt ∈ [q, q], Q0 given (8)

Qt = max( max
0≤t′≤t

Qt′ , Q0) Q0 given (9)

ṗt = α(1− F (Qt)− pt), p0 given (10)
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where Q0 ≥ Q0 and p0 ≥ 1 − F (Q0). One can see that only three values are relevant

at the planning date: Q0, Q0, and p0. These values are informative enough to replace

the full description of the past trajectory (Qt)t≤0, thanks to the assumption of a Poisson

process for delays.

Notice also that the problem is autonomous: time enters only through geometric

discounting. However, there are three state variables here, so that solutions need not

be monotonic.6 This allows for scenarios where the planner may first experiment by

increasing the stock variable, and then switch to reducing this variable so as to mitigate

the loss in case a catastrophe occurs; after a while, the planner might become optimistic

enough to experiment further, and so on. We will pay careful attention to the logic of

such experimentation policies.

3 Watch your step: the no-delay case (α→∞)

In the absence of delays, a catastrophe occurs as soon as it is triggered: learning is

immediate, and the legacy from the past in the survival probability is zero. This case

was first studied in Tsur and Zemel (1994, 1995, 1996) and recently applied by Lemoine

and Traeger (2014), and our contribution here is mainly to provide simple and general

proofs. Because learning is immediate, we have pt = 1−F (Qt) at all dates. We also know

that Q0 is below S, since otherwise a catastrophe would already have occurred. Now, at

the planning date exactly two values matter: Q0 and Q0. In spite of this multiplicity, we

first show that one can focus on monotonic candidates.

Lemma 1 The value of the problem in the no-delay case is unaffected if one further

imposes the constraint that the stock variable (Qt) is monotonic.

Monotonicity results from two effects. Conjecturing a non-monotonic path as depicted

in Figure 1, we see that Q and the record Q are the same at t1 and t2. For this reason,

if it is optimal to increase Q at t2, the planner cannot gain anything from the detour to

a lower level but rather should behave identically at t1. Note that this reasoning fails

in the presence of delays: at t1 the planner might want to reduce the stock in order to

mitigate losses associated to a past triggering of a catastrophe. This effect is weaker at

t2, since the planner has observed that no catastrophe has occurred so far, which makes

less likely that a catastrophe was triggered in the past.

6As observed in, e.g., Benhabib and Nishimura (1979).
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One further observes that at the left of t1 the planner has chosen to increase the stock,

even though such experimentation may trigger a costly catastrophe. However, this fear

is irrelevant at the right of t1, as one cannot trigger a catastrophe by staying below the

level Qt1 . Therefore the planner should not choose to reduce the stock, in contradiction

to the Figure. And once more, this second reasoning also fails in the presence of delays,

because it might be worthwhile to reduce the stock at the right of t1 in case a catastrophe

was triggered in the past.

Figure 1

!"

#
#$#%

!"

Monotonicity

Monotonicity thus results both from the fact that the problem is autonomous, and

from the fact that catastrophes are costly. It ensures that the problem has a solution, and

offers a simple manner to determine it. Indeed, either we impose that the candidate is

weakly decreasing: then catastrophes cannot occur, pt is a constant (1−F (Q0)) forever,

and we are back to the NCP case with the additional constraint qt ≤ 0, for which existence

of a solution is easily proven. Or we impose that the candidate is weakly increasing. In

this latter case, if Q0 < Q0, there is an initial phase without experiment, and then

Qt = Qt everywhere, and pt = 1− F (Qt). After this initial phase, the objective function

is ∫ +∞

0

[u(qt, Qt)(1− F (Qt)) + f(Qt)qtV (Qt)] exp(−δt)dt

to be maximized under the constraint Q̇t = qt ≥ 0. This problem is autonomous, and once

more our assumptions ensure the existence of a monotonic solution.7 Overall, existence

of a solution follows from the comparison of these two candidates.

7In particular, we need that f is bounded; see Theorem 15, p. 237, in Seierstadt and Sydsaeter, 1987.
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We now turn to a characterization of solutions, as a function of the initial values

Q0 and Q0. One important reasoning is the following. When a path converges to the

maximum value Q∞, the option of experimenting more exists. It yields a gain measured

by ν, but risks triggering a catastrophe with a hazard rate ρ, implying a damage D. This

motivates the following definition. From our assumptions, functions ρ and D are weakly

increasing, and therefore there exists a value Q∗∗0 ≤ Q∗ such that:8

ν(Q∗∗0 ) = ρ(Q∗∗0 )D(Q∗∗0 ). (11)

For the sake of simplicity, assume that this value is unique in [−∞,+∞].

Proposition 1 In the absence of delay, for each value of (Q0, Q0) there exists a solution

such that:

(i) If Q0 ≥ Q∗, then the planner never experiments, and the solution is the decreasing

NCP path, converging to Q∗.

(ii) If Q0 < Q∗, then the solution is weakly increasing. Moreover:

(ii.a) If Q0 ≥ Q∗, the solution is the NCP path, converging to Q∗.

(ii.b) If Q∗∗0 < Q0 < Q∗, the solution is first increasing, then it is constant and

equals Q0.

(ii.c) If Q0 ≤ Q∗∗0 , the solution converges to Q∗∗0 .

To convey some intuition, let us focus on the simpler case when the stock has been

increasing in the past, so that Q0 = Q0 at the planning date t = 0. In case (i), this

initial value is high, so that it is best to reduce the stock, without experimenting. Then

catastrophes do not play any role, and one simply has to follow the NCP solution, which

is decreasing and converges to Q∗. In case (ii.c), this initial value is low. The best

strategy is thus to increase the stock and to experiment, until one reaches Q∗∗0 . At that

value, the gain ν from increasing the stock is exactly balanced by the loss ρD associated

to a possible triggering of a catastrophe.

Case (ii.b) is remarkable. One begins at a value of the stock that is below Q∗, and

thus one would like to increase the stock because ν(Q0) > 0. But this would imply

experimenting, and experimenting is too costly because Q0 > Q∗∗0 and therefore ν(Q0) <

ρ(Q0)D(Q0). Then the solution is a constant path, equal to Q0. The apparition of an

optimal constant path is an original feature. In the NCP, a constant path is optimal

8The case Q∗∗0 =∞ leads to immediate adaptations to the statements that follow.
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only when one begins with a value of the stock exactly equal to Q∗. In the problem with

catastrophes and no delays, a constant path appears in case (ii.b), corresponding to a

region with non-empty interior. Moreover, this region is relevant even if the stock was

optimally managed in the past. In fact, if at the origin of time the initial stock is between

Q∗∗0 and Q∗, then the optimal strategy is indeed to follow a constant path, equal to the

initial stock Q0.

As already mentioned, similar results were already obtained in Tsur and Zemel (1994,

Proposition 2.1; 1995, Proposition 5.1; 1996, Proposition 4.1). Their models are slightly

different, essentially because the damage function in case of a catastrophe takes a par-

ticular and different form in each of these papers. They also rely on more demanding

assumptions.9 But the main conclusion is the same. To quote their 1996 paper, p. 1291:

The steady states of the optimal emission process form an interval, the bound-

aries of which attract the pollution process from any initial level outside the

interval.

4 The case with delays

Let us now turn to the general problem with delays, as stated in (7)-(10). We begin by

studying what can happen in the very long run. A first possibility is that the planner

chooses a path that exceeds S, thereby triggering a catastrophe with certainty. So let

us call T a date at which QT ≥ S, and let us study the planning problem after time T .

Referring to (10), we immediately get that the survival probability is going to zero:

pt = pT exp(−α(t− T )). (12)

Plugging this expression into (7), we have to maximize∫ +∞

T

[u(qt, Qt) + αV (Qt)] exp(−(α + δ)t)dt (13)

under the constraint Q̇t = qt. Notice the formal similarity with the NCP objective

defined in (4). Here, the past triggering of a catastrophe modifies the payoffs and the

discount factor, but we can use essentially the same proofs as in Lemma A.1 to prove

similar results. In particular, this problem is autonomous, and it admits a monotonic

9In particular, their proof of monotonicity relies on a complex assumption that we do not need here
(1994, Assumptions U1-U2).
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solution. Moreover, the behavior of the solution in the long-run is governed by the

following function of Q, built from the objective function exactly as ν was built from

u exp(−δt):

uq(0, Q) +
uQ(0, Q) + αV ′(Q)

α + δ
.

This function turns out to be equal to:

ν(Q)− α

α + δ
D′(Q)

From Assumptions 1-2, this function is weakly decreasing in Q, and is below ν(Q).

Therefore, it may reach zero only at a value Q̂ below Q∗. Once more, for simplicity we

assume that this value is unique in [−∞,+∞].

Lemma 2 Suppose there exists T such that QT ≥ S. Then after T , there exists an

optimal path (Qt)t≥T that is monotonic, and that converges to Q̂.

To understand the definition of Q̂, recall that we are in the case when a catastrophe

has been triggered, and will occur with certainty in the future. Then any increase in the

stock yields an increase in future damages, discounted by a coefficient that takes into

account the stochastic delay before the catastrophe occurs.10 A similar trade-off appears

in Clarke and Reed (1996), Polasky et al. (2011), Cai et. al. (2013), Sakamoto (2014), or

Lontzek et al. (2015.) In those works, the catastrophe happens at time t with a hazard

rate h(Qt), where h is a given function, so that the survival probability writes:

pt = pT exp(−
∫ t

T

h(Qτ )dτ).

Comparing with (12), we see that these works can be interpreted as assuming that

a catastrophe has been triggered in the past. They then focus on how to best manage

two distinct elements: i) the delay before the catastrophe, which can be controlled by

reducing the stock because h is assumed to be an increasing function of Q; this element

is absent from our model, as by assumption the delay follows a process with a constant

hazard rate α, independent from Q; ii) and the damage from the catastrophe, as in our

model where V (Q) is allowed to depend on Q. By assuming exogenous delays, our setting

is thus less general, but on the other hand it allows to deal with the question of whether

to trigger a catastrophe in the first place.

10Recall that the delay τ follows a Poisson process with parameter α, so that this coefficient is indeed
E exp(−δτ) = α

α+δ .
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In particular, whether one would want to trigger a catastrophe with probability one

is an intriguing question. We can show that this is not the case if Q̂ is low enough, as

follows:

Lemma 3 Suppose Q̂ ≤ S, and Q0 ≤ S. Then one can focus on paths that lie below S:

Qt ≤ S, for all t.

Indeed, assume S is reached at some finite time T for the first time. After T , because

Q̂ ≤ S, Lemma 2 implies that the optimal path is weakly decreasing. This shows that

the stock can never exceed S, as claimed.

We can now give a useful definition. For a given path (Q), define Q∞ as the supremum

value for the stock. In general, this value will be finite, either because the stock never

exceeds S; or because it does exceed this level, but then converges to Q̂. In fact, the only

case where the supremum value can be infinite is when Q̂ is itself infinite.

So far, we have studied the case when the supremum value is above S. For the

alternative case, a general result is as follows:

Lemma 4 If Q∞ < S, one can focus on paths that converge to min{Q∗, Q∞}.

The idea here is very simple: since Qt converges to a finite limit Q∞, experimentation

has to become negligible in the long-run. As time goes by, the legacy from the past

goes to zero, and the objective becomes to maximize the integral of the instantaneous

payoff u, under the constraint that the stock does not exceed Q∞. Still, this last value is

endogenous to the problem, and to determine it we have to dig deeper.

A simple argument applies here. Suppose that the path converges to Q∞, and con-

sider what happens in the very long-run. The planner could increase q by some small

amount, during some small period of time. The gain in utility flow is then measured by

ν. On the other hand, the associated experiment may trigger a catastrophe: the corre-

sponding hazard rate is ρ, and compared to the constant path the damage is D. Notice

additionally that this damage will only be incurred after a delay, and thus is discounted

by E exp(−δτ) = α
α+δ

.

This intuitive reasoning motivates the following definition. Because ρ and D are

weakly decreasing, there exists a value Q∗∗, with Q∗∗0 ≤ Q∗∗ ≤ Q∗ such that:11

ν(Q∗∗) =
α

α + δ
ρ(Q∗∗)D(Q∗∗). (14)

11The case Q∗∗ =∞ leads to immediate adaptations to the statements that follow.
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For the sake of simplicity, assume that this value is unique in [−∞,+∞]. The intuition

given above indicates that when the stock is below Q∗∗ one should experiment further,

and indeed we have the following result:

Lemma 5 One can focus on paths such that Q∞ ≥ Q∗∗.

Finally, our next result further restricts the set of paths to be considered.

Lemma 6 One can focus on paths (Qt) such that:

(i) When the stock is strictly below Q̂, then it is weakly increasing.

(ii) When the stock is strictly above Q∗ (but strictly below S), then it is weakly de-

creasing.

An intuition for the first result is as follows. Suppose the stock is below Q̂. When

a catastrophe was triggered in the past with probability one, Lemma 2 indicates that

one should increase the stock. If more generally the probability of having triggered a

catastrophe is less than one, then increasing the stock is even more valuable.

The proof of the second result is much more involved, but the intuition is similar.

Suppose the stock is above Q∗. In the absence of catastrophe, the NCP solution indicates

that one should adopt a decreasing path. If in addition a catastrophe may have been

triggered in the past, then reducing the stock is even more valuable. On the other hand,

when catastrophes are introduced one now has the possibility to experiment further, and

this effect makes the proof more involved.12

Finally, an important consequence of this second result is that when the stock is

initially lower than Q∗, it must remain below forever.

5 Applications

In this section, we provide a few applications of our general results.

12The difficulty comes from our definition of a catastrophe as a net loss compared to a constant path
(see Assumption 2). This definition is simple and general, but it does not allow to rely on a catastrophe
being sufficiently damaging. This is related to the Assumptions used in Tsur and Zemel (1994), see
footnote 9.
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5.1 A cake of unknown size, with delays

The question of how to eat a cake of unknown size was first proposed by Kemp (1976),

and Kumar (2005) provides a fairly general study. The question may seem narrow,

but in fact it encompasses questions such as the sustainability of an extraction effort

under uncertainty, or the resilience of an ecosystem to the harvesting of a particular

specie. In that model, the planner has to choose a consumption q at each date, until the

cumulative consumption Q exceeds an uncertain threshold S, drawn in a distribution F .

Then consumption is zero forever. We extend this framework by introducing a stochastic

delay between the triggering date and the occurrence of the catastrophe, on one side; and

by allowing for damages after the catastrophe that depend on the consumption stock Q

at the date the catastrophe occurs.

So assume instantaneous utility u(q) only depends on consumption q, where u is

strictly increasing on [q, q], and is normalized so that u(0) = 0. Then ν(Q) = u′(0) is

strictly positive, and therefore Q∗ = +∞. This means that in the absence of catastrophe,

the planner should forever extract as much as possible.

The tipping point is distributed on [S, S], with 0 ≤ S < S, with a cdf F and an in-

creasing hazard rate ρ. When a catastrophe occurs, the game stops, and the continuation

value is assumed to be linear:

V (Q) = −(d0 + d1Q) d0 ≥ 0, d1 ≥ 0.

This last assumption extends the literature, that has so far assumed d0 = d1 = 0. The

values of these two parameters will turn out to be very important. For further reference,

notice that the damage function D(Q) is simply

D(Q) = d0 + d1Q.

At this stage, one can apply Proposition 1 to solve the problem in the case without

delays. Let Q∗∗0 be the value such that

u′(0) = ρ(Q)(d0 + d1Q).

From the Proposition, we obtain that solutions are always nondecreasing. Only two

cases (cases (ii).b and (ii).c) are possible. Either one inherits from the past a low level

of experimentation (Q0 < Q∗∗0 ), and then the optimal path is increasing and converges

to Q∗∗0 . Or one has already experimented a lot (Q0 ≥ Q∗∗0 ), and then the optimal path
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consists in consuming zero forever. A higher damage function impacts this general picture

only to the extent that it reduces the value of Q∗∗0 .

Let us now introduce delays that follow a Poisson distribution. Lemma 2 has shown

that if the cumulative consumption Q exceeds S at some date, then it must converge

toward the level Q̂, such that ν(Q̂) = α
α+δ

D′(Q̂). This definition suggests to distinguish

two cases that are very different.

In Case 1, which is the case usually considered in the literature, the damage is a

constant d0, independent from cumulative extraction: so that d1 = 0. Then it is easily

shown that Q̂ is infinite: once a catastrophe is triggered with certainty, the optimal

management consists in extracting as much as possible before the catastrophe occurs.

In such a case, from result (i) in Lemma 6 we obtain that the solution must be weakly

increasing.

This result relies on the fact that when d1 = 0, then the damage in case a catastrophe

occurs does not depend on the present level of the stock. Hence, even though past ex-

periments matter to present utility levels, they do not support a reduction of the present

stock for precautionary reasons: the legacy of the past does not make the decision-maker

more cautious.

To summarize: in Case 1, a monotonic solution exists (to be characterized soon!), and

the introduction of delays makes the decision-maker less cautious (proof to be completed

soon.)

In Case 2, the damage now depends on cumulative extraction: d0 = 0 < d1. Now

assume

u′(0) <
α

α + δ
d1.

Then Q̂ = −∞: once a catastrophe is triggered with certainty, the optimal man-

agement consists in reducing the stock as much as possible, thereby trying to mitigate

damages before a catastrophe occurs. Now suppose that we start at time 0 after having

experimented intensively in the recent past; so that the level of the stock is equal to the

highest level on record (Q0 = Q0), the level itself is quite high, and so is the legacy from

the past. Then one would like to reduce the stock so as to mitigate the damage in case a

catastrophe was triggered in the past. After some time, the fact that a catastrophe did

not occur makes the planner more optimistic, and he will switch to increasing the stock
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level again. We therefore expect that in Case 2 non-monotonic policies are sometimes

optimal. To show this formally, let us simplify this model by assuming that utility is

linear:

u(q) = q q ∈ [q, q],

and that S is uniformly distributed on [0, S]. An important threshold is Q∗∗, such that

ν(Q) = α
α+δ

ρ(Q)D(Q). Here we obtain

Q∗∗ =
S

1 + α
α+δ

d1
.

This threshold measures the incentives to experiment further, when there is no legacy

from the past. The following claim proves that a non-monotonic path is optimal, under

conditions that hold if marginal damages d1 are high enough.

Lemma 7 In Case 2, let π0 ≡ 1− 1−F (Q0)
p0

< 1 be the legacy from the past at time zero.

Suppose Q∗∗ < Q0 = Q0 < S, and

1 < π0
α

α + δ
d1. (15)

Then there exists an optimal path, and it is such that, for some t1, t2, with 0 < t1 <

t2 < +∞:

• qt = q < 0 for t < t1;

• qt = q > 0 for t1 < t < t2;

• qt = 0 for t > t2.

Another interesting insight is that this phenomenon occurs if the legacy from the past

is high enough, so that history matters. In particular, if one has experimented a lot in

the recent past, then one should become more cautious in the near future. This is a form

of hysteresis that did not appear in previous models.

6 Conclusion

Inferences about catastrophes are difficult before they actually happen. We have de-

veloped a novel approach for understanding the optimal experimentation with tipping

points that come with delay and severity depending on past actions. History, i.e., how the

current state of the world was reached, becomes a critical determinant of future policies.
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A Proof Appendix

N.B.: to alleviate notations, we often write e for exp(−δt), and we omit argu-

ments when there is no ambiguity.

We begin by studying the No-Catastrophe Problem (NCP), which consists in

maximizing ∫ +∞

0

u(qt, Qt) exp(−δt)dt

under the constraints Q̇t = qt ∈ [q, q], Q0 given. Let W ∗(Q0) denote the value of this

program.

Lemma A.1 For every Q0, there exists a monotonic solution to the NCP problem, that

converges to Q∗. Moreover, for every path (Q, q), the function

X∗(T ) ≡
∫ T

0

u(qt, Qt) exp(−δt)dt+ exp(−δT )W ∗(QT ) (A.1)

is weakly decreasing with T .

Proof of Lemma A.1: Existence follows from Theorem 15, p.237, in Seierstadt and

Sydsaeter (1987). The NCP is an autonomous problem, and therefore at any time t the

optimal decision for q can be specified so as to depend only on the value of the state

variable Qt. In turn, this implies that there exists a monotonic solution.13 For this

monotonic solution, because u is concave in q we have:

u(qt, Qt) ≤ u(0, Qt) + qtuq(0, Qt) = u(0, Q0) +

∫ Qt

Q0

uQ(0, x)dx+ qtuq(0, Qt).

The second term can be integrated by parts:∫ +∞

0

e

∫ Qt

Q0

uQ(0, x)dxdt =

[
exp(−δt)
−δ

∫ Qt

Q0

uQ(0, x)dx

]+∞
0

+

∫ +∞

0

qt
uQ(0, Qt)

δ
edt.

13A general proof of this result is in Hartl (1987).
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The bracketed term is zero. We have shown:∫ +∞

0

u(qt, Qt) exp(−δt)dt ≤ u(0, Q0)

δ
+

∫ +∞

0

qtν(Qt) exp(−δt)dt. (A.2)

Consider the case Q0 < Q∗ (the case Q0 > Q∗ can be handled in a symmetric way.) If

the solution is weakly decreasing, then Qt is everywhere belowQ∗, so that ν(Qt) > 0 from

Assumption 1. Therefore, if in addition the solution is somewhere strictly decreasing,

then from the above inequality the criterion on the left-hand side is strictly less than

u(0, Q0)/δ, which is the feasible payoff associated to the constant path (q = 0, Q = Q0):

we thus get a contradiction. This shows that the solution must be weakly increasing.

Let Q+ ≤ +∞ be its supremum.

If Q+ > Q∗, then after some time T the stock is weakly increasing above Q∗, so that

qt ≥ 0 and ν(Qt) < 0, and once more we get a contradiction thanks to (A.2).

If Q+ < Q∗, or if Q+ is finite and Q∗ = +∞, then for every positive ε there exists

T such that Qt ≥ Q+ − ε for all t ≥ T . After T , because ν is decreasing we have

0 < ν(Qt) ≤ ν(Q+ − ε), which is finite. Moreover, we have
∫
t≥T qtdt = Q+ − QT ≤ ε.

This shows that the second term in the right-hand-side of (A.2) is proportional to ε,

and finally that the right-hand-side of (A.2) can be made arbitrarily close to u(0, Q+)/δ.

Therefore, for T high enough the best payoff the planner can hope for is also arbitrarily

close to u(0, Q+)/δ.

But then one can add ∆q > 0 to q during a short period of time ∆t, with a change

in payoff arbitrarily close to:

∆q∆tuq(0, Q
+) + ∆q∆t

uQ(0, Q+)

δ
= ∆q∆tν(Q+).

If Q+ < Q∗, this expression is strictly positive, thanks to Assumption 1, and we ob-

tain a contradiction. Therefore the solution must converge to Q∗, as announced.

Finally, for a given path (qt, Qt), define X∗(T ) as in the Lemma. Then, for T < T ′

we have:

X∗(T )−X∗(T ′) = exp(−δT )W ∗(QT )− exp(−δT ′)W ∗(QT ′)−
∫ T ′

T

u(qt, Qt) exp(−δt)dt.

Let T0 = T ′− T , q′t = qt+T , Q′t = Qt+T . Then the above expression equals exp(−δT ),

times

W ∗(Q′0)−
[∫ T0

0

u(q′t, Q
′
t) exp(−δt)dt+ exp(−δT0)W ∗(Q′T0)

]
,
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which is weakly positive by definition of W ∗. This shows that X∗(T ) is weakly decreasing

in T . �

Proof of Lemma 1: consider a candidate (qt, Qt). Suppose there exist two arbitrary

dates 0 and T > 0, such that for any t ∈ [0, T ], we have Qt ≤ Q0 = QT . In such a case,

the record stock is a constant (Q0 = QT ), and therefore the problem at time zero and

the problem at time T are identical. This proves that at time zero the planner could as

well adopt the strategy he has planned to apply at time T .

This procedure can be applied to all similar cases, and in particular to those when Q

is first decreasing, then increasing. Therefore, we can focus on paths that are first weakly

increasing on some interval [0, T ], and then weakly decreasing on [T,+∞[. If T = 0 or

T = +∞, we are done, so suppose 0 < T < +∞. Then QT is the maximum stock

value. Therefore, after time T catastrophes cannot occur anymore, and one maximizes∫
t≥T u(qt, Qt) exp(−δt)dt under the constraints Q̇ = q and Qt ≤ QT . If QT ≤ Q∗, the

best thing to do is to make the last constraint bind everywhere,14 and therefore we are

done, as the candidate path is weakly increasing on [0, T ] and constant over [T,+∞[,

and is thus monotonic.

The only remaining case is when QT > Q∗. Then the best thing to do after time T

is to behave as in the NCP, and to adopt a path that is decreasing (see Lemma A.1) for

t above T . For t < T , because (Qt) is weakly increasing we have Qt = Qt. Therefore

pt = 1− F (Qt), and the complete payoff from the candidate path is:∫ T

0

[u(qt, Qt)(1− F (Qt)) + f(Qt)qtV (Qt)] exp(−δt)dt+ exp(−δT )W ∗(QT )(1− F (QT )).

We can rewrite it as

(1− F (QT ))X∗(T ) +

∫ T

0

[u(qt, Qt)(F (QT )− F (Qt)) + f(Qt)qtV (Qt)]edt (A.3)

where X∗(T ) is defined in Lemma A.1, and is weakly decreasing in T . The other terms

are differentiable with respect to T , and their derivatives sum to:

qtf(Qt)

[
−X∗(T ) + V (QT ) exp(−δT ) +

∫ T

0

uedt

]
= qtf(QT ) [V (QT )−W ∗(QT )] exp(−δT )

14This is easily shown: this problem is autonomous, and therefore admits a monotonic solution; the
solution cannot be somewhere strictly decreasing, by an argument similar to the one following the
derivation of (A.2).
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which is below zero because qt ≥ 0 for t < T , and W ∗(QT ) is at least u(0,QT )
δ

(because

one can adopt a constant path), which itself is above V (QT ) from Assumption 2. So

reducing T in the payoff (A.3) is weakly profitable, at least until QT = Q∗ (and then the

candidate becomes weakly increasing everywhere, as already observed), or until T = 0

(this happens when Q0 ≥ Q∗, and then the candidate is the NCP solution which is weakly

decreasing overall). �

Proof of Proposition 1: the problem admits a monotonic solution for each (Q0, Q0).

In case (i), suppose that the path Qt is weakly increasing. Then, as long as Q < Q0 the

objective function is u(1−F (Q0)), and above Q0 the objective function is u(1−F (Q)) +

f(Q)qV . By setting p = 1− F (max(Q,Q0)), we are left with the maximization of

W ≡
∫

[pu− ṗV ]edt.

Now we use the inequality V (Q) ≤ u(0, Q)/δ (from Assumption 2), and we integrate

by parts to get

W ≤
∫

[pu− ṗu(0, Q)

δ
]edt = p0

u(0, Q0)

δ
+

∫
p[u− u(0, Q) + q

uQ(0, Q)

δ
]edt.

By concavity of u, this is less than

p0
u(0, Q0)

δ
+

∫
pqνedt.

But the second term is negative, as Q ≥ Q∗ and thus ν ≤ 0, and as q ≥ 0. Hence,

the planner would be better off by choosing the constant path, since the latter yields the

payoff p0u(0, Q0)/δ.

We thus have reached a contradiction, and the planner should choose a weakly de-

creasing path. By construction, such a path involves no experiment. The best one is

thus the NCP solution, as stated in the Proposition.

In case (ii), a weakly decreasing path would involve no experiment, and therefore

would maximize
∫
uedt, with the additional constraint qt ≤ 0. But because Q0 < Q∗, the

solution to the NCP is weakly increasing, and therefore this additional constraint would

be binding everywhere. Therefore, a weakly decreasing path would in fact be a constant

path, so that we can focus on the case of a weakly increasing path.

Notice that such a path involves no experiment as long as it stays below Q0. In case

(ii.a), Q0 is never reached, since the best thing to do is to adopt the NCP solution, as
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stated in the Proposition. Otherwise we have Q0 < Q∗, and therefore Q0 must be reached

in finite time, say T . At T , one has to maximize∫ +∞

T

[u(qt, Qt)(1− F (Qt)) + f(Qt)qtV (Qt)] exp(−δt)dt

under the constraints Q̇t = qt ≥ 0, with an initial value Q0. As explained in the main

text, a solution exists. The problem is autonomous, and we can proceed as in Lemma

A.1 to show that it converges to a value Q such that wq(0, Q) + wQ(0, Q)/δ = 0, where

w is the function in the integral above. Here, this condition translates into

uq(1− F ) + fV +
uQ(1− F )− uf

δ
= 0

or equivalently ν(Q) = ρ(Q)D(Q), which is the definition of Q∗∗0 . This is possible if

Q∗∗0 ≥ Q0 (case (ii.c)). Otherwise, the constraint q ≥ 0 binds, as in case (ii.b). �

Proof of Lemma 2: as explained in the text, the proof proceeds exactly as the proof

of Lemma A.1. Indeed, problem (13) exhibits the same properties as the NCP: it is

autonomous, and the objective u+ αV is concave in q, and bounded from above thanks

to Assumptions 1 and 2. �

For further reference, we state the following result, that follows from computing the

unique solution to the differential equation (10):

Lemma A.2 For any T and t ≥ T , one has:

pt = pT exp(−α(t− T )) + α exp(−αt)
∫ t

T

(1− F (Qτ )) exp(ατ)dτ. (A.4)

In particular, when Q is a constant, we denote the survival probability by P , and one

has:

Pt = 1− F (QT ) + (pT − (1− F (QT ))) exp(−α(t− T )). (A.5)

We now study the case when Q∞ is reached in finite time. Suppose that Q reaches

a maximum value Q∞ at time T < +∞. After time T , there is no new experimentation,

and Q remains constant. We use (A.5) to compute the objective function:

pu− ṗV = (1− F (Q∞))u+ (pT − 1 + F (Q∞))(u+ αV ) exp(−α(t− T )).
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This motivates the study of the following problem: for m ∈ [0, 1] and Q0 given,

maximize ∫ +∞

0

[mu exp(−δt) + (1−m)(u+ αV ) exp(−(α + δ)t)] dt

under the constraint Q̇ = q, Q0 given. Let W (Q0,m) denote the value of this program;

for m = 0 we are back to the program studied in Lemma 2.

Lemma A.3 There exists a solution to the program defining W (Q0,m). Moreover, W

is weakly increasing in m. Finally, for any path (q,Q), and any (p0 > 0, Q0), define pt

by (10). Then, if Qt = Qt on an interval [t0, t1], the function

X(T ) ≡
∫ T

t0

[pu− ṗV ]edt+ pT exp(−δT )W (QT ,
1− F (QT )

pT
) (A.6)

is weakly decreasing with respect to T on [t0, t1].

Proof of Lemma A.3: Once more, existence of a solution follows from Theorem 15,

p. 237, in Seierstadt and Sydsaeter (1987). W is convex in m, as a maximum of linear

functions. Moreover, by the envelope theorem its derivative equals∫
u exp(−δt)dt−

∫
(u+ αV ) exp(−(α + δ)t)dt.

Thanks to the convexity of W in m, to show that this derivative is positive, it is

sufficient to show that it is positive when computed using the solution to W (Q0,m = 0).

Along this path, we have

W (Q0, 0) =

∫ T

0

(u+ αV ) exp(−(α + δ)t)dt+ exp(−(α + δ)T )W (QT , 0),

and by differentiating the right-hand-side with respect to T , we get:

u(qt, Qt) = (α + δ)W (Qt, 0)− αV (Qt)− qt
∂W

∂Q0

(Qt, 0). (A.7)

By integrating over the whole path, we get∫
u exp(−δt)dt =

∫
[(α+δ)W (Qt, 0)−αV (Qt)] exp(−δt)dt−

∫
qt
∂W

∂Q0

(Qt, 0) exp(−δt)dt

= α

∫
[W (Qt, 0)− V (Qt)] exp(−δt)dt−

∫
d

dt
[W (Qt, 0) exp(−δt)]dt

= α

∫
[W (Qt, 0)− V (Qt)] exp(−δt)dt+W (Q0, 0).
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Finally, because in the problem W (Q, 0) one can choose a constant path we have

W (Q, 0) ≥ u(0, Q)

δ
= V (Q) +D(Q) ≥ V (Q)

and therefore we have shown that
∫
u exp(−δt)dt ≥ W (Q0, 0), as needed. This shows

that W (Q0,m) is increasing in m at the right of zero, and therefore that W (Q0,m) is

increasing in m on [0, 1], by convexity.

Again proceeding as in Lemma A.1, for any m ∈ [0, 1] and T , define:

m′T =
m

m+ (1−m) exp(−αT )
.

Then for any path (q,Q), we can write:

W (Q0,m) ≥
∫ T

0

[mu exp(−δt) + (1−m)(u+ αV )] exp(−(α + δ)t)]dτ

+

∫ +∞

T

[mu exp(−δt) + (1−m)(u+ αV )] exp(−(α + δ)t)]dτ.

where the second integral is computed using the solution to W (QT ,m
′
T ). Now, this

second integral is easily seen to be equal to

(m+ (1−m) exp(−αT )) exp(−δT )W (QT ,m
′
T ).

Therefore:

W (Q0,m) ≥
∫ T

0

[mu exp(−δt) + (1−m)(u+ αV ) exp(−(α + δ)t)]dτ

+(m+ (1−m) exp(−αT )) exp(−δT )W (QT ,m
′
T ).

Consequently, the right-derivative of the right-hand-side at T = 0 must be weakly

negative, at any q0, Q0, m:

u+α(1−m)V − (δ+α(1−m))W (Q0,m) + q
∂W

∂Q0

(Q0,m) +αm(1−m)
∂W

∂m
(Q0,m) ≤ 0.

(A.8)

Keeping this in mind, the derivative of X(T ) with respect to T is, after simplification by

exp(−δT ), and taking into account the equality QT = QT :

pu− ṗV + (ṗ− δp)W (QT ,m) + pq
∂W

∂Q0

(QT ,m)− 1

p
(fqp+ (1− F )ṗ)

∂W

∂m
(QT ,m)
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where m ≡ 1−F (QT )
pT

. Accordingly, since ṗ = α(1 − F (Q) − p) we get ṗ/p = −α(1 −m).

Simplifying by p, the above expression becomes

u+ α(1−m)V − (δ + α(1−m))W + q
∂W

∂Q0

+ (αm(1−m)− fq

p
)
∂W

∂m
.

Finally, from (A.8) at q0 = qT , Q0 = QT , m = 1−F (QT )
pT

, we get that this derivative

is less than −fq
p
∂W
∂m

, which is below zero as q ≥ 0, and W has just been shown to be

increasing in m. �

Proof of Lemma 4: in the long-run, we know that Qt converges to Q∞ < S. Because

F is continuous, this implies that F (Qt) converges to F (Q∞). From (10), pt converges to

a strictly positive value 1 − F (Q∞), while ṗt converges to zero. From (7), the objective

function is

pu− ṗV = u[1− F (Q∞)] + u[p− (1− F (Q∞))]− ṗV.

Maximizing the integral of the first term is the NCP problem. Because u and V are

bounded from above, the last two bracketed terms are arbitrarily small for t high enough.

Hence, these two last terms are transitory, and in the long-run only the first term mat-

ters. This shows that the planner should try to make the path as close as possible to Q∗

in the long run. Taking into account the constraint Qt ≤ Q∞, we get that the trajectory

must converge to min{Q∗, Q∞}. �

Proof of Lemma 5: Let us proceed by contradiction. Suppose Q∞ < Q∗∗. Then

Q∞ < Q∗, and from Lemma 4 the path must converge to Q∞, necessarily from below.

By concavity of u in q, u converges to u(0, Q∞). p converges to (1 − F (Q∞)), and ṗ

converges to zero. Total payoff is

W ≡
∫

[pu−ṗV ]edt = p0
u(0, Q0)

δ
+

∫
p[u−u(0, Q)−quq(0, Q)]edt+

∫
pqνedt+

∫
ṗDedt.

Suppose that for t high enough we modify q during a short period of time ∆t by

adding a small quantity ∆q > 0. In the above expression, the first term is unaffected,

and the second term can be neglected because q is close to zero and u is concave. For

the third term, because q is close to zero only the initial variation of q matters, so that

the variation of the third term is ∆q∆t, times

(1− F (Q∞))ν(Q∞).
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For the fourth and last term, from (A.4) we have:

pt = p0 exp(−αt) + α exp(−αt)
∫ t

0

(1− F (Qτ )) exp(ατ)dτ.

Therefore, the variation of p is:

∆p = α exp(−αt)
∫ t

0

(−f(Qτ )∆q∆t) exp(ατ)dτ = −f(Q∞)∆q∆t(1− exp(−αt)).

Using (10), we have:

∆ṗ = −αf(Q∞)∆q∆t− α∆p = −αf(Q∞)∆q∆t exp(−αt).

Because ṗ converges to zero, the variation of the fourth term is:

−αf(Q∞)∆q∆tD(Q∞)
1

α + δ
.

Finally, the total variation is ∆q∆t, times

(1− F (Q∞))ν(Q∞)− α

α + δ
f(Q∞)D(Q∞).

This is positive if Q∞ < Q∗∗, and thus we get a contradiction. �

The following Lemma is used repeatedly in the proofs below.

Lemma A.4 Let t1 < t2, let (q,Q) be a feasible path, and let N(Q) ≡
∫ Q
Qt1

ν(x)dx. If

(q,Q) is solution, then the following properties hold:

(i) If t2 < +∞, Qt1 = Qt2, Qt1 = Qt2, then∫ t2

t1

ṗ(D −D(Qt1))edt ≥
∫ t2

t1

N ˙̂pedt; (A.9)

(ii) If t2 = +∞, then∫ +∞

t1

[ṗ(D−D(Qt1)−
α + δ

α
N) + δ(1−F (Q))N − αδ

α + δ
(F (Q)−F (Qt1))D(Qt1)]edt ≥ 0.

(A.10)

Proof of Lemma A.4: Recall that by definition V (Q) = u(0, Q)/δ − D(Q). By inte-

grating the planner’s payoff by parts, we get:

W =

∫
[pu− ṗu(0, Q)

δ
+ ṗD]e = −[p

u(0, Q)

δ
e] +

∫
[p(u− u(0, Q) + q

uQ(0, Q)

δ
) + ṗD]edt.
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The concavity of u in q implies:

W ≤ −[p
u(0, Q)

δ
e] +

∫
p[quq(0, Q) + q

uQ(0, Q)

δ
]edt+

∫
ṗDedt.

The first integral is exactly
∫
pqνe. Because

˙̇
N(Q) = qν(Q), we have:∫

pqνedt = [pNe]−
∫
N ˙̂pedt.

Therefore:

W ≤ [p(N − u(0, Q)

δ
)e] +D(Qt1)

∫
ṗedt+

∫
ṗ(D −D(Qt1))edt−

∫
N ˙̂pedt. (A.11)

We now compute the payoff W0 associated to a constant path. Hence, Q is constant,

and q is zero. Therefore, repeating the above derivation now yields an equality; notice

however that though the survival probability P associated to this constant path is initially

the same (Pt1 = pt1), beyond t1 it may differ from p (see Lemma A.2.) We obtain:

W0 = [P (N − u(0, Q)

δ
)e] +D(Qt1)

∫
Ṗ edt.

If (q,Q) is a solution, then it must be that the inequality W ≥ W0 holds, and therefore

that the right-hand side in (A.11) is above W0. To check this in case (i), notice that Q is

the same constant for both paths, so that P and p are everywhere equal. Hence, the first

bracketed term is the same in both expressions. The only terms that remain are those

in (A.9).

In case (ii), the first bracketed terms are the same because they are both zero at

infinity, and because they are equal at t1. For the factors in D(Qt1), by applying (A.4)

to both p and P , we get:

Pt − pt = α exp(−αt)
∫ t

t1

(F (Qτ )− F (Qt1)) exp(ατ)dτ.

Then, we integrate by parts twice to get:∫ +∞

t1

(Ṗ − ṗ)edt = δ

∫ +∞

t1

(P − p)edt =
αδ

α + δ

∫ +∞

t1

(F (Qt)− F (Qt1)) exp(−δt)dt

which is the last term in (A.10). The only remaining terms are the following ones:∫
ṗ(D −D(Qt1))edt−

∫
N ˙̂pedt.
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To simplify these terms, we notice that ˙̂pe = (ṗ− δp)e, and we can use (10) to remark

that p = −ṗ/α + 1− F (Qt); so that

˙̂pe = [ṗ
α + δ

α
− δ(1− F (Qt))]e.

This yields the first two terms in (A.10). �

Proof of Lemma 6: We first show (i). Let us proceed by contradiction, and consider a

path which is such that at some dates t′ < t′′ one has Qt′′ < Qt′ < Q̂. Because Q̂ ≤ Q∗,

from Lemma 4 Q must ultimately converge to a level above Qt′ . Therefore, there exists

t1 < t2 such that Qt ≤ Qt1 = Qt2 < Q̂ for all t ∈ [t1, t2]. Notice moreover that on this

interval Q is a constant, and equals Qt1 . Therefore, the inequality (A.9) mut hold.

Now, because Qt < Q̂, we have ν(Qt) ≥ α
α+δ

D′(Qt), and by integrating between Qt1

and Qt we get N(Qt) ≤ α
α+δ

[D(Qt)−D(Qt1)].

Moreover, ˙̂pe = (ṗ − δp)e ≤ 0, and we can use (10) to remark that p = −ṗ/α + 1 −
F (Qt1); so that ˙̂pe = (ṗα+δ

α
− δ(1− F (Qt1)))e ≤ ṗα+δ

α
. Overall, we get

N ˙̂pe ≥ α

α + δ
[D(Qt)−D(Qt1)]

˙̂pe ≥ [D(Qt)−D(Qt1)]ṗe,

where the second inequality comes from the fact that Qt ≤ Qt1 and D is increasing. By

integrating between t1 and t2, this contradicts the optimality condition (A.9) in Lemma

A.4. So we can focus on paths which are weakly increasing with time when the stock is

below Q̂, as stated in (i) in the Lemma.

To show (ii), consider a path and a date at which Q is strictly above Q∗. Then

Q∞ > Q∗, and from Lemma 4 Q must ultimately converge to Q∗. Therefore, Q∞ must

be reached in finite time, say T . We begin by showing that the path must be weakly

decreasing for t > T .

After time T , the survival probability evolves as in (A.5), and the best the planner

can hope is to get pTW (QT ,m), where W is the function defined just before Lemma A.3,

and m = (1 − F (QT ))/pT > 0. In fact, the planner gets exactly this payoff, because

we now show that the solution to the problem W (QT ,m) must be weakly decreasing, as

long as it is above Q∗.

Let us prove this result by contradiction. For t > T , suppose that the path (Q) solu-

tion to W (QT ,m) is somewhere strictly increasing while above Q∗. Because it ultimately
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converges to min(Q∗, Q∞) = Q∗, there must exist t1 < t2 such that

Q∗ ≤ Qt1 = Qt2 ≤ Qt ≤ Q∞

for all t ∈ [t1, t2]. Note that all paths verifying this property (and in particular the

constant path (q = 0, Q = Qt1)) share the same survival probabilities P on [t1, t2], and

the same values of Q and Q at t = t2. Therefore, one can aim at maximizing

W =

∫ t2

t1

[Pu− Ṗ V ]edt

over the set of such paths. We then check (A.9) in Lemma A.4. Because Qt > Qt1 > Q∗,

we have ν(Qt) ≤ 0 and N(Qt) ≤ 0. Because pe is decreasing with time, the right-

hand-side in (A.9) is at least zero. Moreover, because D is increasing we have D(Qt) ≥
D(Qt1), and because p is decreasing we obtain that the left-hand-side is below zero. This

contradicts (A.9), a contradiction. So we can focus on paths which are weakly decreasing

with time after time T , as long as the stock is above Q∗.

Now, if T = 0, then the stock is weakly decreasing above Q∗, and this shows (ii).

If T > 0, then there is an interval [T ′, T ] on which qt ≥ 0 and Qt = Qt > Q∗. By

assumption, the planner stops experimenting at t = T . Suppose he stops experimenting

at t0 ∈ [T ′, T ] instead, by choosing a path below Qt0 after time t0. From the above proof,

the best path is weakly decreasing, as long as it remains above Q∗. Therefore, the payoff

from stopping at t0 is∫ t0

T ′
[pu− ṗV ]edt+ exp(−δt0)pt0W (Qt0 , (1− F (Qt0))/pt0)

and the last result in Lemma A.3 states that this function is decreasing in t0. This yields

a contradiction, as the planner should stop experimenting earlier. This concludes the

proof. �

The following intermediate result is used below in the proof of Lemma 7:

Lemma A.5 Suppose max(Q∗∗, Q0) < Q∞ < min(Q∗, S). Then Q∞ is reached in finite

time, and Q∞ ≤ Q̂.

Proof of Lemma A.5: the assumptions in the Lemma imply that the path converges

to Q∞, necessarily from below. Let us proceed by contradiction, and suppose that Q∞ is
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reached only asymptotically, so that for all t one has Qt ≤ Qt < Q∞. We know that Qt

converges to Q∞, and that ṗt converges to zero. Therefore, for every ε > 0 there exists

T such that

∀ t ≥ T, |Q∞ −Qt| < ε and |ṗ| < ε.

Moreover, there must exist15 t1 ≥ T such that Q1 = Q1 (notice that to alleviate

notations we write 1 instead of t1.) From now on we focus on the time interval [t1,+∞[,

with the aim of checking (A.10) in Lemma A.4. Referring to this result, we define two

functions: first,

N(Q) =

∫ Q

Q1

ν(Q′)dQ′,

and second, function A(Q,Q, ṗ):

ṗ

[
D(Q)−D(Q1)−

α + δ

α
N(Q)

]
+δ

[
(1− F (Q))N(Q)− α

α + δ
(F (Q)− F (Q1))D(Q1)

]
,

and we want to show that for t ≥ t1 we have A(Qt, Qt, ṗt) < 0. Result (ii) in Lemma A.4

would then imply that the planner would be better off by adopting a constant path after

time t1, in contradiction with our assumptions.

Let us begin by the first bracketed term in the definition of A. Let

Z(Q) ≡ D(Q)−D(Q1)−
α + δ

α
N(Q).

Z is a convex function, and Z(Q1) = 0. Therefore:

Z(Q) ≥ (Q−Q1)Z
′(Q1). (A.12)

Moreover, because Z ′ is monotonic, and max(Q∗∗, Q0) < Q1 < Q∞, we have

|Z ′(Q1)| ≤ k0 ≡ max(|Z ′(max(Q∗∗, Q0))|, |Z ′(Q∞|).

Finally, we know that |ṗ| is less than ε. This shows that the absolute value of the

first term in A is below

k0ε|Q−Q1|. (A.13)

We now turn to the second bracketed term in A. It can be written as

(1− F (Q))(N(Q)−N(Q)) + Y (Q),

15Suppose otherwise. Then for every t ≥ T one has Qt < Qt. But then Qt must be a constant, in
contradiction with the fact that Qt converges to Q∞, and reaches this value only asymptotically.
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where

Y (Q) = (1− F (Q))N(Q)− α

α + δ
(F (Q)− F (Q1))D(Q1).

Notice first that

N(Q)−N(Q) =

∫ Q

Q

(−ν(Q′))dQ′ ≤ −(Q−Q)ν(Q∞) (A.14)

because ν is decreasing, and Q ≤ Q′ ≤ Q < Q∞. Turning to Y , for the same reason we

have

N(Q) ≤ (Q−Q1)ν(Q1),

and because 1− F is decreasing, and ρ is increasing, and Q1 ≤ Q,

F (Q)− F (Q1) =

∫ Q

Q1

f(Q′)dQ′ =

∫ Q

Q1

ρ(Q′)(1− F (Q′))dQ′

≥ (1− F (Q))

∫ Q

Q1

ρ(Q′)dQ′ ≥ (1− F (Q))ρ(Q1)(Q−Q1).

Because Q1 = Q1, we obtain:

Y (Q) ≤ (1− F (Q))(Q−Q1)[ν(Q1)−
α

α + δ
ρ(Q1)D(Q1)].

Let M(Q1) denote the last bracketed term. Because Q1 > Q∗∗, it is strictly negative.

Therefore:

Y (Q) ≤ (1− F (Q∞))(Q−Q1)M(Q1).

Moreover, M is continuous. Hence, by choosing ε small enough M(Q1) can be made

close to M(Q∞), so that

M(Q1) ≤
1

2
M(Q∞) < 0.

So we define

k1 ≡ −
1

2
(1− F (Q∞))M(Q∞) > 0

and overall, using also (A.13) and (A.14), we have shown:

A(Q,Q, ṗ) ≤ k0ε|Q−Q1| − δ(1− F (Q))(Q−Q)ν(Q∞)− δk1(Q−Q1).

Finally, because

|Q−Q1| ≤ |Q−Q|+ |Q−Q1| = Q−Q+Q−Q1,

35



we obtain

A(Q,Q, ṗ) ≤ −(Q−Q)[δ(1− F (Q))ν(Q∞)− k0ε]− (Q−Q1)[δk1 − k0ε].

For ε small enough, the first bracketed term is strictly positive because Qt < S and

Q∞ < Q∗, and therefore (1 − F (Q))ν(Q∞) > 0; and so is the second term, because

k1 > 0. Comparing to (A.10) provides the contradiction we need.

This shows that Q∞ is reached in finite time, say at time T . Moreover, T > 0, be-

cause Q∞ > Q0 by assumption. Therefore, there exists T ′ < T such that Q is increasing

on [T ′, T ], and therefore Q = Q on this interval. There remains to show the inequality

Q∞ ≤ Q̂. To do so, we proceed by contradiction, and we assume Q∞ > Q̂. This implies

that we can choose t1 ∈ [T ′, T ] so that Q̂ < Q1 < Q∞. For such a t1, we can define N

and A as above. Referring to the lines above, Z(Q) is at least zero: indeed, Q ≥ Q1,

Z(Q1) = 0, and Z is increasing above Q1 because Q1 > Q̂. Because ṗ ≤ 0, the first term

in A is therefore below zero. Finally, one shows that the second term in A is also below

zero exactly as in the lines above. Overall, this shows once more that A(Qt, Qt, ṗt) ≤ 0

for all t ≥ t1, and once again we apply result (ii) in Lemma A.4 to get a contradiction.

This shows Q∞ ≤ Q̂, as announced. �

Proof of Lemma 7: from Lemma 3, we can focus on paths that are below S. From

Lemma 4, we can focus on paths that converge to their highest value Q∞. Suppose

Q∞ > Q0. Then we can apply Lemma A.5, and we get a contradiction, as Q∞ is

supposed to be below Q̂ = −∞. Therefore, we can focus on paths that do not exceed

Q0, and converge to Q0. Therefore, the planner never experiments after time 0. Then p

can be explicitly computed, and we end up maximizing∫
[m0u exp(−δt) + (1−m0)(u+ αV ) exp(−(α + δ)t)]dt

where m0 ≡ (1 − F (Q0))/p0 > 0, under the constraints Q̇ = q and Q ≤ Q0. The

objective function is

m0q exp(−δt) + (1−m0)(q − α(d0 + d1Q)) exp(−(α + δ)t).

Now we have, for any parameter k > 0:∫
Q exp(−kt) =

Q0

k
+

∫
q

1

k
exp(−kt)dt.
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We apply this formula to integrate the objective function over the whole horizon.

Ignoring the constant terms, we obtain∫
q

[
m0 + (1−m0) exp(−αt)(1− α

α + δ
d1)

]
exp(−δt)dt.

Because 1 < α
α+δ

d1, the bracketed coefficient is increasing in t, and positive at t = +∞.

Because 1−m0 = π0, the same coefficient is negative at t = 0. The planner should thus

behave as indicated in the claim. �
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