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In this paper, we introduce polluting emissions in the sequential bilateral oligopoly
model with a productive sector of Julien and Tricou (2012), which extends the bilateral
oligopoly model of Gabszewicz and Michel (1997). We de�ne an equilibrium concept,
namely the Stackelberg Cournot equilibrium with emissions. By modelling emissions as a
negative externality, we show notably that the leader pollutes more (less) than her direct
follower in the presence of strategic substituability (complementarity). Thus, we study two
kinds of regulation to control the levels of emissions, namely three taxation mechanisms,
and a permits market. Then, we compare the two kinds of policies, and we show that
preferences matter, i.e., the e¤ectiveness of economic policy also depends on preferences.
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1. INTRODUCTION

Positive and normative aspects of environmental pollution under strategic inter-
actions have been mainly developed in partial equilibrium models (Montero, 2009,
De Feo et al., 2013, Hintermann, 2017) or in two-sector models where one sector
embodies one single price-taking consumer (Crettez et al., 2014). In these models,
the supply side in the commodity market embodies big �rms whose behavior is
strategic whilst the demand side for the produced good is assumed to be perfectly
competitive. The competitive side is represented either by a competitive fringe
(Hahn, 1984, Sartzadakis 2004) or by an auctioneer whose task is to determine the
market price (Malueg and Yates, 2009, Lange 2012, Haita, 2014, among others). In
addition, the working and the e¤ects of economic policies on emissions depend on
some price-taking or partial equilibrium assumptions. In this paper, we consider a
simple two-stage strategic market game in which the market demand is endogenous
and all traders behave strategically to exploit the potential gains from trade. The
objectives are twofold. First, we determine whether the sequential choice a¤ects
the pollution behavior. Second, we compare two kinds of regulation to control the
levels of emissions, namely three taxation mechanisms and a permits market.
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To study polluting emissions in strategic market games, we extend the bilat-
eral oligopoly model with a �nite number of traders introduced by Gabszewicz
and Michel (1997), and explored notably by Bloch and Ghosal (1997), Bloch and
Ferrer (2001), and Dickson and Hartley (2008). The bilateral oligopoly model is a
two-commodity version of the strategic market game models (Shapley and Shubik,
1977, Sahi and Yao, 1989, and Amir et al., 1990) in which each trader has cor-
ner endowment but wants to consume both commodities. There is a market price
which aggregates the strategic supplies of all traders and allocates the amounts
traded to each market participant. To simplify the analysis of the strategic equi-
librium, and to perform some comparative statics exercises, we propose a simple
model which has a unique non-trivial strategic equilibrium. Indeed, it enables to cir-
cumvent some technical di¢ culties associated with the existence of an equilibrium
with trade in pure exchange models. Indeed, the existence of an active equilibrium,
i.e., an equilibrium with trade, is not ensured in strategic market games (Cordella
and Gabszewicz, 1998, Busetto and Codognato, 2005).
More speci�cally, we introduce polluting emissions in the sequential bilateral

oligopoly model with a productive sector of Julien and Tricou (2012), which extends
the bilateral oligopoly model of Gabszewicz and Michel (1997). Therefore, we
consider a two-stage �nite bilateral oligopoly market with a productive sector in
which one leader and one follower produce one commodity with a linear polluting
technology. The production activities generate polluting emissions, i.e., negative
externalities on the utility of the strategic traders who belong to the other sector.
The strategic traders compete on quantities, and all traders try to manipulate the
market price through their supplies. The �nite game is a two-stage game where the
players are the traders, the strategies are the supplies, and the payo¤s are the utility
levels they reach in the market outcome. In this note, we compute the subgame
perfect Nash equilibrium of the two-stage game, namely the Stackelberg-Cournot
equilibrium (SCE henceforth) with emissions. Then, we compare the SCE with the
Cournot equilibrium (CE) with emissions. Finally, we determine whether some
taxation policies or a competitive permit market could limit the emissions.
Some studies have been undertaken on strategic market games. Godal (2011)

considers various market oligopoly structures to deal with emissions trading from
autarky to Pareto optimality. Pollution permits are notably treated as one com-
modity traded against commodity money. Dickson and MacKenzie (2018) consider
the implications of strategic trade in pollution markets by using a sequential game.
In a �rst stage, the permit market is developed as a bilateral oligopoly model where
all �rms behave strategically, and their roles as buyers or sellers of permits are de-
termined endogenously. In a second stage, �rms transact competitively in a product
market. But if the �rms behave strategically a la Cournot, the comparative statics
is more di¢ cult to handle as the market outcome depends on each �rm�s marginal
cost in relation to those of its rivals. Therefore, the overall e¤ect of strategic behav-
ior in the product market is ambiguous. In this note, we consider strategic behavior
in the output market, and we rather focus on the e¤ects of pollution, and on some
public policies which could limit these e¤ects.
Our contribution to the literature is twofold. First, we propose a two-stage

bilateral oligopoly model to analyze the e¤ects of pollution in interrelated market.
This two-stage speci�cation captures some speci�c features such as heterogeneity
in market power. The comparative statics exercices, i.e., the e¤ects of a changes in
taxes and in the price of permit, di¤er from those obtained in the one-stage game.
One salient feature is the comparative statics that exhibits either complementarity
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or substituability between the leader and the follower strategies. Second, our model
constitutes, to the best of our knowledge, the �rst strategic sequential model which
compares two kinds of regulations: taxation mechanisms and permit market in
interrelated markets. We notably show the performance of these two tools depends
upon the preferences of traders. Therefore, our analysis complements the bilateral
oligopoly models with taxation (Gabszewicz and Grazzini, 1999, Grazzini, 2006),
and those with a permit market (Godal, 2011, Dickson and MacKenzie, 2018).
The remaining of the paper is organized as follows. Section 2 states the model.

In Section 3, we compute the Stackelberg-Cournot equilibrium. Section 4 is devoted
to the study of taxation mechanisms. In Section 5, we study the e¤ects of a permits
market. In Section 6 we conclude. An Appendix collects some useful computations.

2. THE MODEL

Consider an economy with two divisible homogeneous commodities labeled X
and Y . Let pX and pY be the corresponding unit prices. We assume commodity Y
is the numeraire, so pY = 1. The economy embodies n+2 agents of two types: two
agents of type I, who are consumers and producers, and n agents of type II, with
n > 2, who are pure consumers. Type I agents are indexed by i, i 2 f1; 2g, and
type II agents are indexed by j, j 2 f1; :::; ng.
The distribution of endowments among the two agents of type I and the n agents

of type II satis�es respectively:

!i = (0; 0), i = 1; 2 (1)

!j = (0;
1

n
), j = 1; :::; n. (2)

Therefore, commodity X does not exist initially and must be produced. Thus,
we assume, like in Gabszewicz and Michel (1997), that type I traders have inherited
some technology which speci�es how to produce some amount zi of good X with
some amount ki of good Y . The production function Fi(ki) of agent i is given by:

zi = Fi(ki) =
1

�i
ki, �i > 1, i = 1; 2. (3)

In addition, following Sanin and Zanaj (2011), (2012), and Crettez et al. (2014),
we assume that, when commodity Y is transformed to obtain commodity X, it acts
like a polluting input. Thus, the polluting input generates a quantity of emissions
ei as follows:5

ei =
1


ki,  > 1, i = 1; 2. (4)

Therefore, X is a polluting consumption good: from (3) and (4), zi =

�i
ei.

The preferences of agents are represented by the following utility functions:

u(xi; yi) = x
�
j :y

1��
j , � 2 (0; 1), i = 1; 2; (5)

u(xj ; yj ; e1; e2) = x
�
j :y

1��
j � �(e1 + e2), �; � 2 (0; 1), j = 1; :::; n, (6)

5Stokey (1998) studies the limit on emissions via an index technology.
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where x (resp. y) are the amount consumed of commodity X (resp. Y ), and � is the
disutility of pollution as emissions display negative externalities on the individual
welfare of agent j 2 f1; :::; ng. The utility function (5) is continuous, twice contin-
uously di¤erentiable, strictly increasing, and strictly concave in (x; y) on R2++.
The (symmetric) competitive equilibrium of this economy is given by p�X = �,

(e�i ; q
�
i ) =

�
1
2
�
 ;

1
2
�
�

�
, (z�i ; k

�
i ) =

�
1
2
�
� ;

�
2

�
, (x�i ; y

�
i ) = (0; 0), and u�i = 0, for each

i = 1; 2; and by b�j =
�
n , (x

�
j ; y

�
j ) =

�
�
�n ;

1��
n

�
, and u�j =

�
�
�

��
(1� �)1�� 1n � �

�
 ,

for all j = 1; :::; n.
To this exchange economy, we associate a two-stage non-cooperative strategic

market game �. The strategy sets of traders are given by:

Qi = f(qi; bi) 2 R2+ : qi 6 zi; bi = 0g, i = 1; 2 (7)

Bj = f(qj ; bj) 2 R2+ : qj = 0; bj 6
1

n
g, j = 1; :::; n, (8)

where qi (resp. bj) represents the pure strategies of trader i (resp. trader j). The
strategy qi represents the amount of commodity X trader i sells in exchange for
commodity Y . Similarly, bj is the pure strategy of trader j. A strategy pro�le is a
vector (q;b) = (q1; q2; b1; b2; :::; bN2), with (q;b) 2

Q
iQi�

Q
j Bj . Let b�j denote

the strategy pro�le of all traders of type II but j. It is worth noticing that, for each
i, the level of emissions ei, with ei 2 R+, for each i = 1; 2, is not a strategy like qi,
but merely a decision variable which depends upon the technology of emissions (4),
and which is linked to the production technology (3). Therefore, the leader and
her direct follower do not take into consideration the emissions made by her direct
rival when making their choices.6

The �nite game � is a two-stage game where the players are the traders, the
strategies are the supplies, and the payo¤s are the utility levels they reach in the
market outcome. This game displays two stages of decisions and no discounting.
We also assume the timing of positions is given. No trader makes a choice in two
subgames. In addition, traders meet once and cannot make binding agreements.
By precluding binding agreements, we consider each trader acts independently and
without communication with any of the others. Thus, � is a two-stage game, which
embodies one simultaneous move subgame between the followers. Finally, infor-
mation is assumed to be complete and perfect. Information is perfect because any
leader perfectly knows the behavior of all followers, and, each follower�s information
set is a single decision node.7 In each decision node, any follower makes an opti-
mal choice, so sequential rationality prevails. As sequential rationality is common
knowledge, the game is solved by backward induction.
Any strategic trader i has two decisions to make: which quantity qi of good

X to sell strategically on the market; and, which quantity of good X to produce,
which through (3) and (4) determines the level of emissions ei. Thus, her income
is equal to her pro�t �i(ei; qi) := pXqi � iei, i = 1; 2. Any strategic trader j
�nances her purchase of commodity X by selling some amounts of commodity Y ,
i.e., yj = 1

pX
bj , and her consumption of commodity Y is given by the surplus 1n�bj .

Traders behave strategically, and are aware of their in�uence on the price pX .
6 It will be shown that emissions may be written as functions of strategies.
7 It is worth noticing that the entire (sub)game � is a sequential game with perfect information:

every information set is a singleton, and every node initiates a subgame. In particular, followers
perfectly know the optimal strategies of leaders.
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Given an n + 2-tuple of strategies (q;b) 2 Q1 � Q2 � B1::: � Bn, the market

price pX , for which demand balances supply, that is,
nP
j=1

bj = pX
2P
i=1

qi, obtains as:

pX(q;b) =

Pn
j=1 bjP2
i=1 qi

. (9)

The �nal allocations assign the following bundles for each type of traders:

8i 2 f1; 2g (xi; yi) =

 


�i
ei � qi;

Pn
j=1 bj

q1 + q2
qi � ei

!
; (10)

8j 2 f1; :::; ng (xj ; yj) =

 
q1 + q2

bj +
P

�j 6=j b�j
bj ;
1

n
� bj

!
. (11)

The corresponding utility levels may be written as payo¤s:

8i 2 f1; 2g �i(ei; qi; q�i;b) =

�


�i
ei � qi

�� Pn
j=1 bj

q1 + q2
qi � ei

!1��
; (12)

8j �j(e1; e2;q; bj ;b�j) =

 
q1 + q2

bj +
P

�j 6=j b�j
bj

!��
1

n
� bj

�1��
��(e1+e2). (13)

3. NON-COOPERATIVE EQUILIBRIA WITH EMISSIONS

3.1. SCE: de�nition and computation

We de�ne the SCE as the noncooperative equilibrium outcome of the game �.

Definition 1. (SCE). A Stackelberg-Cournot equilibrium of � is a (n + 4)-
tuple (~e; ~q; ~b), which consists of a strategy pro�le (~q1; ~q2; ~b1; :::;~bn) and an emission
pro�le (~e1; ~e2) such that:
a. �2(~e2; ~q1; ~q2; ~b1; :::;~bn))) > �2(e2; ~q1; q2; ~b1; :::;~bn)), for all e2 2 R+, q2 2 Q2;
b. �j(~e1; ~e2; ~q1; ~q2; ~b1; :::;~bj ; :::;~bn)) > �j(~q1; ~q2; ~b1; :::; bj ; :::;~bn)), for all bj 2 Bj ;
c. �1(~e1; ~q1; ~q2(~q1); ~b(~q1)) > �1(e1; q1; q2(q1);b(q1)), for all b(q1) 2

nQ
j=1

Bj , and

all q2(q1) 2 Q2, for all e1 2 R+, q1 2 Q1.

Proposition 1. The interior SCE strategy pro�les and emissions pro�les of �
are given by:

(~q1; ~q2) =
�
�
4

�2
(�1)

2
n�1
n�� ;

�
2�1
(1� 1

2
�2
�1
) n�1n��

�
;

(~e1; ~e2) =
�
�(1+�)
4

�2
�1

n�1
n�� ;

�
2

2��1+(1��)�2
�1

(1� 1
2
�2
�1
) n�1n��

�
;

~bj =
�
n
n�1
n�� , j = 1; :::; n.

Proof. See Appendix A.

It is possible to check that ~q1 T ~q2, whenever
�2
�1
S 1: when the leader�s marginal

cost is lower, she has higher market share than her direct follower.
We now explore the issue of emissions in this strategic behavior quantity setting

two stage game.

5



Remark 1. The emissions of the leader and the follower increase with their sup-
plies as ~e1 = 1+�

 �1~q1 and ~e2 =
2��1+(1��)�2

 ~q2.

Remark 2. The emissions are lower in the SCE than in the competitive equi-

librium: we have ~e1 + ~e2 =
�


h
1+�
4

�2
�1
+ (1� 1

2
�2
�1
) 2��1+(1��)�22�1

i
n�1
n�� < �

 as
1+�
4

�2
�1
+ (1� 1

2
�2
�1
) 2��1+(1��)�22�1

< 1 and n�1
n�� < 1.

Proposition 2. In a SCE, the leader�s emissions are higher (resp. lower) than
the follower�s emissions when the strategies of trader of type I are substitutes (resp.
complements).

Proof. We have to show that ~e1 > ~e2 if �1 6 �2. Assume �1 6 �2, with
�2 = ��1, 1 6 � 6 2. By using the expression of ~e1 and ~e2 in Proposition 1, we
de�ne the di¤erence:

� � ~e1 � ~e2, with � =
1 + �


�1~q1 �

2��1 + (1� �)��1


~q2.

Some calculations yield:

� =
1

4

�



n� 1
n� �f1 + �� [2�+ (1� �)�] (2� �)g.

Then, we have � > 0 as 1 6 � 6 2 and � 2 (0; 1). Then, ~e1 > ~e2 if �1 6 �2.

The source of pollution comes from the production of commodity X. Less
marginal cost means higher production and more emissions. As strategies are sub-
stitutes, the leader has higher market power. Therefore, when the leader has lower
marginal cost, she pollutes more than her direct follower.
We determine now the SCE allocations, and the corresponding payo¤s. From

(9) and Proposition 1, the market price is given by ~pX = 2�1. Then, by using
(10)-(11), the individual allocations are given by:

(~x1; ~y1) =
�

4

�2
�21

n� 1
n� � (�; (1� �)�1) ; (14)

(~x2; ~y2) =
�

�2

�
1� 1

2

�2
�1

�2
n� 1
n� � (�; (1� �)�2) ; (15)

(~xj ; ~yj) =

�
1

2�1

�

n

n� 1
n� �;

1� �
n� �

�
. (16)

Then, we deduce the corresponding payo¤s for each trader i 2 f1; 2g:

~�1 =
��+1

4

�2
�1

�
1

�1

��
(1� �)1�� n� 1

n� � ; (17)

~�2 = �
�+1

�
1� 1

2

�2
�1

�2�
1

�2

��
(1� �)1�� n� 1

n� � ; (18)

and, for each trader j 2 f1; :::; ng:

~�j =

�
�(n�1)
2�1n

��
(1� �)1��

n� � ���
�2
2 +

�
1� 1

2
�2
�1

�
(2��1 + (1� �)�2)
2�1

n� 1
n� � . (19)
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The SCE is ine¢ cient: by using (14)-(16), we see that the marginal rates of sub-
stitution di¤er accross traders, i.e., MRSiX=Y = �i, i = 1; 2, and MRS

j
X=Y =

2�1
n�1 ,

j = 1; :::; n. The reason stems from the imperfect competitive behavior of traders.
The market power of traders stems from the restriction of their supplies, which
increases the relative price. In addition, it is easy to check that the leader�s payo¤ is
higher than her direct follower�s payo¤as ~�1�~�2 = ��+1

4 ( 1
��1
)� (1� �)1�� n�1

n�� [�
�+1�

(2� �)2] > 0, as � 2 (0; 1), and 1 6 � 6 2. Finally, there is no Pareto domination
between the SCE and the competitive equilibrium (Julien and Tricou, 2012).

3.2. Comparison with the CE

To put forward the role played by the leader, let us now determine the Cournot
equilibrium (CE) with emissions in which all traders interact simultaneously.

Proposition 3. The interior CE strategy pro�les and emissions pro�les are
given by:

(q̂1; q̂2) =
�
� �2
(�1+�2)

2
n�1
n�� ; �

�1
(�1+�2)

2
n�1
n��

�
(ê1; ê2) =

�
�

�2(�1+��2)
(�1+�2)

2
n�1
n�� ;

�

�1(�2+��1)
(�1+�2)

2
n�1
n��

�
b̂j =

�
n
n�1
n�� , j = 1; :::; n.

Proof. See Appendix B for a computation of the CE.

It is easy to check that when �1 = �2, the SCE coincides with the symmetric
CE (Julien and Tricou, 2012).
The next proposition compares the emissions in the SCE and in the CE.

Proposition 4. The level of emissions is higher (resp. lower) in the SCE than
in the CE if the strategies of the leader and the follower are substitutes (resp. com-
plements), i.e., if the leader has lower (resp. higher) marginal cost.

Proof. In a SCE we have:

~e1 + ~e2 =
�

4

�2
(�1)

2
[4�(�1)

2 + 3(1� �)�1�2 � (1� �)(�2)2]:

In a CE, we have:

ê1 + ê2 =
�



1

(�1 + �2)
2

n� 1
n� � [�(�1)

2 + 2�1�2 + �(�2)
2]:

Therefore, if strategies are substitutes, we have �1 6 �2. Thus, by letting �2 =
��1, with 1 6 � 6 2, we deduce:

(~e1 + ~e2)� (ê1 + ê2) =
�(1� �)
4

(�1)
2�2

(�1 + �2)
2

n� 1
n� ��(� � 1)(5� �) > 0.

In case of strategic complementarity, the follower�s supply of commodity X is
higher than the leader�s supply. Therefore the di¤erence (~e1 + ~e2)� (ê1 + ê2) may
be negative as trader 1 produces less when she behaves as a Cournot player (see
Proposition 3).
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In addition, it is worth noticing that a trader pollutes more when she behaves
as a leader in a SCE than when she behaves à la Cournot in a CE, provided she
has lower marginal cost than her direct rival, i.e., ~e1 > ê1, whenever �1 6 �2.

Indeed, ~q1 > q̂1 when
�2
�1

> 1. In addition, ~x1 � x̂1 = �2

4
�2
(�1)

2

(�1��2)2
(�1+�2)

2
n�1
n�� >

0. Then, we have ~e1 > ê1, whenever �1 6 �2. But, for the follower the sign of
(~e2 � ê2) is undetermined. Indeed, as �2

�1
2 (0; 2], we have ~q2 6 q̂2. But ~x2 � x̂2 =

1
4��1

( �
1+� )

2(1 � �)(4 + � � �2) n�1n�� 6 0 as � 2 [1; 2]. So, we cannot conclude that
~e2 > ê2.
Remark 3. Some computations yield ~�1 > �̂1 and ~�2 6 �̂2, whenever �1 6 �2.
The problem is now to determine whether the pollution could be decreased,

either with a tax mechanism or with a permit market.

4. TAXATION MECHANISMS

We now introduce three �scal policies, namely, an ad valorem taxation on emis-
sions, a per unit taxation, and an ad valorem taxation on strategy. Such taxes
have been introduced in the bilateral oligopoly model under Cournot competition
by Gabszewicz and Grazzini (1999), and Grazzini (2006). To simplify, we assume
the total tax product T is used to �nance some exogenous government expenditure,
namely G, with 0 < G <1, subject to a balanced budget rule, i.e., T = G.
In the �rst case, consider that a tax ti 2 (0; 1), i = 1; 2, is levied on the emissions

of the leader and the follower, with T � t1~e1 + t2~e2 = G. Given an n+ 2-tuple of
strategies (q;b) 2 Q1�Q2�B1:::�Bn, and a tax system t = (t1; t2), the resulting
post tax allocation is given by (xi; yi) =

�

�i
(1� ti)ei � qi;

Pn
j=1 bjP2
i=1 qi

qi � (1� ti)ei
�
,

for each i = 1; 2. Therefore, from (12), the payo¤s in � with ad valorem taxation
on emissions may be written:

�i(ei; qi; q�i;b; t) =

�


�i
(1� ti)ei � qi

�� Pn
j=1 bjP2
i=1 qi

qi � (1� ti)ei

!1��
, i = 1; 2.

(20)
In the second case, consider a tax �i 2 (0; 1), i = 1; 2, is levied on the supply

qi of commodities X, with T � �1q1+ �2q2 = G. Given an n+2-tuple of strategies
(q;b) 2 Q1 � Q2 � B1::: � Bn and a tax system � = (�1; �2), the resulting post

tax allocation is given by (xi; yi) =
�

�i
ei � qi;

�Pn
j=1 bjP2
i=1 qi

� �i
�
qi � ei

�
, for each

i = 1; 2. Therefore, from (12), the payo¤s in � with per unit taxation may be
written:

�i(ei; qi; q�i;b;�) =

�


�i
ei � qi

�� " Pn
j=1 bjP2
i=1 qi

� �i

!
qi � ei

#1��
, i = 1; 2. (21)

In the third case, consider a tax � i 2 (0; 1), i = 1; 2, is levied on strategy after
exchange takes place, with T � �1q1+ �2q2 = G. Given an n+2-tuple of strategies
(q;b) 2 Q1�Q2�B1:::�Bn and a tax system � = (�1; �2), the resulting post tax

allocation is given by (xi; yi) =
�

�i
ei � qi;

Pn
j=1 bjP2

k=1(1��k)qk
(1� � i)qi � ei

�
, for each
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i = 1; 2. Therefore, from (8) and (9), the payo¤s in � with ad valorem taxation on
trades may be written:

�i(ei; qi; q�i;b; � ) =

�


�i
ei � qi

�� Pn
j=1 bj(1� � i)P2
k=1(1� �k)qk

qi � ei

!1��
, i = 1; 2.

(22)

Proposition 5. Consider the three taxation mechanisms in �. The interior
SCE strategy pro�les and emissions pro�les of � may be written as:

(~q01; ~q
0
2) =

�
�
4

�2+�2
(�1+�1)

2
1��1
1��2

n�1
n�� ;

�
2

1
�1+�1

1��1
1��2

�
1� 1

2
�2+�2
�1+�1

1��1
1��2

�
n�1
n��

�
;

(~e01; ~e
0
2) =

�
(1+�)�1+��1

(1�t1) ~q01;
�[(2�1+�1)(1��2)�(1��1)�2)]+(1��)�2(1��1)

(1�t2)(1��1) ~q02

�
;

~b0j =
�
n
n�1
n�� , j = 1; :::; n.

Proof. See Appendix C.

Proposition 6. Consider the three taxation mechanisms, namely ad valorem
taxes on emissions (t1; t2), per unit taxations (�1; �2), and ad valorem taxation on
trades (�1; �2). Then, in a SCE with taxation, (i) the leader�s emissions increase
with emission taxes; (ii) the leader�s emissions decrease (resp. increase) with the
leader per unit tax (resp. with the follower per unit tax); and, (iii) the leader�s
emissions decrease (resp. increase) with the leader�s ad valorem tax on trades (resp.
with the follower�s ad valorem tax on strategies). The same holds for the follower.

Proof. See Appendix C.

It is worth noticing that there is no di¤erentiated tax which reduces all the
emission levels simultaneously (see (C14)-(C24) in Appendix C). Result (ii) and
(iii) in Proposition 4 may be explained as follows. The strategy of the leader
are complements (resp. substitutes) when �1 > �2 (resp. �1 < �2). But as
~pX(t;�; � ) = 2�1+�11��1 (see (11) in Appendix C), the market price faced by the
follower increases with the taxes �1 and �1, which leads to an increase of the emis-
sions of the follower. The same holds for the leader when increasing �2 and �2.
Therefore, taxing emissions or taxing strategies via di¤erentiated taxes may not be
the appropriate tools to regulate the pollution caused by the leader and her direct
follower. This means notably that heterogeneity in strategic behavior, which entails
di¤erent taxes, has some policy implications.
We are able to state the following proposition.

Proposition 7. Assume that, in an interior SCE, the objective assigned to the
regulator is to determine the optimal tax such as to minimize the sum of emissions
under a balanced budget rule. Then, in an interior SCE, a uniform per unit tax is
the only taxation mechanism which reduces emissions of the leader (resp. follower)
whenever �1 6 �2 6 2�1 (resp. �1 6 �2 6 2�1 and � 6 1

2).

Proof. Let F : R2+ ! R+, with F (e1; e2) = e1 + e2, be the objective function,
and H : R2+ ! R+, with H(e1; e2;G;�1; �2) = G � ( �1e1 + �2e2), with � =
(�1; �2) >> 0, where � = ft;�; �g. The objective assigned to the regulator is
to determine the optimal tax vector ~�, with ~� = f~t; ~�; ~�g, such as to minimize
the sum of emissions under the balanced budget rule. Thus, this problem may be
written:

min e1 + e2 s.t. �1e1 + �2e2 = G, where 0 < G <1.

9



Let the Lagrangian be L : R2+�R�+, with L(e1; e2;�) := e1+e2+�[G�( �1e1+�2e2)].
In an interior SCE with taxation, the optimality conditions lead to ~�1 = ~�2 = ~�
and ~�(~e1+~e2) = G. Consider now the SCE emissions for all taxation mechanisms.
By using the expressions of ~e1(t;�; � ) and ~e2(t;�; � ) given in Proposition 4, and
by letting t1 = t2 = t, �1 = �2 = �, and �1 = �2 = � , we deduce:

~e1(t;�; � ) =
�

4

(1 + �)�1 + ��

(1� t)
�2 + �

(�1 + �)
2

n� 1
n� � ;

~e2(t;�; � ) =
�[2��1 + �� + (1� �)�2]

�
1� 1

2
�2+�
�1+�

�
n�1
n��

2(1� t)(�1 + �)
.

Let �1 = �2 = 0. Therefore, we have that:

~e1(t; t) =
�(1 + �)

4(1� t)
�2
�1

n� 1
n� � ;

~e2(t; t) =
�[2��1 + (1� �)�2]

2(1� t)

�
1� 1

2
�2
�1

�
�1

n� 1
n� � .

We deduce @~ei(t;t)
@t jt=~t > 0, i = 1; 2.

Now, let t1 = t2 = 0. Therefore, we have that:

~e1(�; �) = �
[(1 + �)�1 + ��](�2 + �)

4(�1 + �)
2

n� 1
n� � ;

~e2(�; �) = �
[�(2�1 + �) + (1� �)�2]

�
1� 1

2
�2+�
�1+�

�
2(�1 + �)

n� 1
n� � .

Some computations lead to:

@~e1(�; �)

@� j�=~�
= �� (1 + �)�1(�2 � �1) + �1�2 + [�(1 + �2) + (1� �)�1 � ~�]~�

4(�1 + ~�)
3

n� 1
n� � ,

so we have @~e1(�;�)
@� j�=~� < 0 if �2 > �1. In addition, we get:

@~e2(�; �)

@� j�=~�
= ��

3(1� 2�)(�1 + ~�)�2 + 2�1�2
�
1� (1� �)�2�1

�
+ 2��1~�

4(�1 + ~�)
3

n� 1
n� � ,

so we have @~e2(�;�)
@� j�=~� < 0 if � 6

1
2 .

The conditions under which the emissions decrease with the per unit tax di¤er
for the leader and the follower. For the follower, the negative e¤ect holds if com-
modity X is not strongly preferred to commodity Y . This result is rather di¤erent
in the CE with taxation. Indeed, it is possible to show that the emissions of the
leader and of the follower cannot decrease simultaneously (see Appendix D).

We compare now the individual welfares at an uniform per unit equilibrium
tax. To this end, assume there exists some uniform per unit tax ~� 2 (0; 1) such
that ~�~e1(~�; ~�)+~�~e2(~�; ~�) = G. Therefore, the price is given by ~pX(~�; ~�) = 2(�1+~�)
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(see (C11) in Appendix C). The allocations of the leader and the follower are given
by:

(~x1(~�; ~�); ~y1(~�; ~�)) =
�

4�1

�2 + ~�

�1 + ~�

n� 1
n� � (�; (1� �)�1) ; (23)

(~x2(~�; ~�); ~y2(~�; ~�)) =
�

2�2

2�1 � �2 + ~�
�1 + ~�

�
1� 1

2

�2 + ~�

�1 + ~�

�
n� 1
n� � (�; (1� �)�2) ;

(24)
and the allocation of trader j 2 [1; :::; ng is given by:

(~xj(~�; ~�); ~yj(~�; ~�)) =

�
1

2(�1 + ~�)

�

n

n� 1
n� �;

1� �
n� �

�
. (25)

Thus, the marginal rates of substitution are such that:

MRSiX=Y = �i, i = 1; 2, MRS
j
X=Y = 2(�1 + ~�)

n

n� 1 ; j = 1; :::; n. (26)

Therefore, the taxation policy does not lead to a Pareto optimal allocation. The
reason stems from the fact that the tax is not su¢ ciently strong enough to wipe out
the ine¢ ciency caused by strategic behavior (see Gabszewicz and Grazzini, 1999,
Grazzini, 2006).
Finally, the next proposition considers the e¤ect of an increase of the per unit

tax on the payo¤s of traders of type II.

Proposition 8. The payo¤s of the traders of type II increase under per unit
taxation whenever the negative e¤ect of the per unit tax on emissions dominates
the marginal decrease of indirect utility caused by the increase of the price.

Proof. The payo¤ of trader j 2 f1; :::; ng is given by:

~�j(~�; ~�) =

�
�

2(�1+~�)
n�1
n

��
(1� �)1��

n� � � �� n� 1
n� � ,

where � � �[(1+�)�1+�~�](�2+~�)+[�(2�1+~�)+(1��)�2](2�1+~���2)
4(�1+~�)

2 . Therefore, we have:

@~�j(�; �)

@� j�=~�
= ��

( 1
�1+~�

)�+1(�(n�1)2n )�(1� �)1��

n� � ��
�
@~e1(�)

@� j�=~�
+
@~e2(�)

@� j�=~�

�
.

Therefore, we see that @~�j(�;�)@� j�=~� > 0 if

�

�
@~e1(�; �)

@� j�=~�
+
@~e2(�; �)

@� j�=~�

�
> �

( 1
�1+~�

)�+1(�(n�1)2n )�(1� �)1��

n� � .

This condition holds when � 6 1
2 .

We now turn to the regulation of emissions with a permit market.
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5. POLLUTION PERMITS MARKET

To control the pollution caused by production activities, we assume now there
is a permits market. Each trader i 2 f1; 2g is initially endowed with an amount
�ei of pollution permits, with �e1 + �e2 = ~e1 + ~e2. Therefore, the net purchases of
emissions may be written as r(�ei� ~ei), for any i 2 f1; 2g. Let r be the permit price
in terms of good Y . The price system is now given by (pX ; 1; r). We assume perfect
competition on the permits market, so the price of permits r is given (see notably
Montero, 2009, and Schwartz and Stahn, 2013).8

We are able to state the following proposition.

Proposition 9. The interior SCE strategy pro�les and emssions pro�les of �
with a permits market are given by:

(~q1(r); ~q2(r)) =
�


+r ~q1;


+r ~q2

�
;

(~e1(r); ~e2(r)) =
�

�
+r r�e1 +


+r ~e1;

�
+r r�e2 +


+r ~e2

�
;

~bj(r) =
�
n
n�1
n�� , j = 1; :::; n.

Proof. See Appendix E.

Remark 4. The excess supply of emissions, i.e., the quantity (~e1(r) � �e1), is
such that ~e1(r) � �e1 T 0 whenever �e1 S 

+(1��)r ~e1, with


+(1��)r < 1, where

(~e1(r)� �e1) = 
+r ~e1 �

+(1��)r
+r �e1, and ~e1 =

�(1+�)
4

�2
�1

n�1
n�� .

Proposition 10. The emissions of the leader and the follower increase (resp.
decrease) with the price of permits whenever �ei > ~ei

� (resp. �ei < ~ei
� ), for each

i = 1; 2.

Proof. Consider ~e1(r) = �
+r r�e1 +


+r ~e1. Some computations yield

@~e1(r)
@r =

�
(+r)2

�
�e1 � 1+�

4
�2
�1

n�1
n��

�
. Then, @~e1(r)@r R 0 whenever �e1 R 1+�

4
�2
�1

n�1
n�� =

~e1
� . The

same calculation may be handled for @~e2(r)
@r .

The preceding condition contained in Proposition 10 says that the increase of the
level of emissions depends on the initial endowment of permits: emissions increase
with the price of permits when the endowment of permits exceeds the emissions
without the permits market. Indeed, by using Remark 4, the excess supply of
emissions increases with the price of permits whenever �ei > ~ei

� . In addition, when
the preferences toward commodityX are low, i.e., �! 0, the amount of endowment
�e1 must be large. The same result holds in the CE case (see (F11) in Appendix F).
We determine now the SCE allocations, and the corresponding payo¤s with a

permit market. The market price is given by ~p(r) = 2�1
+r
 , so the allocations are

given by:

(~x1(r); ~y1(r)) =

�
r�e1 +

�

4

�2
�1

n� 1
n� �

��
�

�1



 + r
; 1� �

�
; (27)

(~x2(r); ~y2(r)) =

 
r�e2 + �

�
1� 1

2

�2
�1

�2
n� 1
n� �

!�
�

�2



 + r
; 1� �

�
; (28)

8There is a huge literature devoted to permits under strategic interactions (see Sartzadakis,
1997, Eshel, 2005, Kato, 2006, Von der Fehr, 1993, among others). Crettez et al. (2014) considers
a two-sector Cournot-Walras model with pollution permits with Cournot behavior in one sector
and competitive behavior in the other sector.
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and the allocation of trader j 2 [1; :::; ng, which are given by:

(~xj(r); ~yj(r)) =

�
1

2�1



 + r

�

n

n� 1
n� �;

1� �
n� �

�
. (29)

Therefore, the marginal rates of substitution are such that:

MRSiX=Y = �i
 + r


, i = 1; 2, MRSjX=Y = 2�1

 + r



n

n� 1 ; j = 1; :::; n. (30)

Therefore, the permits market does not lead to a Pareto allocation. The reason
stems once again from the strategic behavior of traders.
Finally, the next proposition considers the e¤ect of an increase of the price of

permits on payo¤s.

Proposition 11. The payo¤s of the traders of type II increase with the price
of permits either when there is a large number of traders of type II or when the
consumers strongly prefer commodity Y .

Proof. For each j 2 f1; :::ng we have that:

~�j(r) =

�
� 1
2�1

n�1
n


+r

��
(1� �)1��

n� � � �
�
�r

 + r
(�e1 + �e2) +



 + r
(~e1 + �e2)

�
.

From the market clearing condition on the permits market, we have ~e1 + �e2 =
�e1 + �e2, so we have:

~�j(r) =

�
� 1
2�1

n�1
n


+r

��
(1� �)1��

n� � � ��r + 
 + r

(�e1 + �e2).

Then, we deduce:

@~�j(r)

@r
=
(1� �)
( + r)2

264�(�e1 + �e2)� �
�

�
1��

1
2�1

n�1
n

�� �
+r


�1��
n� �

375 .
Therefore, we conclude:

lim
�!0

@~�j(r)

@r
=



( + r)2
�(�e1 + �e2) > 0

and lim
n!+1

@~�j(r)

@r
=

(1� �)
( + r)2

�(�e1 + �e2) > 0.

Therefore, when the preferences for commodity X is low, a rise of the price of
permits, and the corresponding decrease of the relative price, are dominated by the
decrease of emissions. In addition, unlike the e¤ect of the per unit tax on payo¤s,
commodity X may be no longer desirable for the payo¤ to increase. In addition,
when there is a large number of traders who compete for selling commodity Y , i.e.,
this side of the market would become perfectly competitive, the increase of the price
of permits is dominated by the decrease of emissions. This result is not speci�c to
Stackelberg as it holds in Cournot competition (see Appendix F). Nevertheless,
Proposition 11 holds as soon as the permit market is competitive: it does not hold
when strategic behavior a¤ects the price of permit (Dickson and MacKenzie, 2018).
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6. CONCLUSION

The preceding model introduced pollution in a two-stage strategic market game.
It could �nd an echo in international trade with resource specialization. Indeed,
heterogeneous strategic agents whose market power di¤ered, and who lived in two
distinct countries would compete on quantity on the world market. The production
activity of one country pollutes the other country through a negative externality
on some traders. The problem is to determine whether emissions levels could be
reduced via some mechanisms when all traders behave strategically.
Two kinds of regulation were envisaged to limit the emissions: taxation mecha-

nisms and permits market. The main conclusions are as follows. First, if the objec-
tive assigned to the regulator is to determine the optimal tax such as to minimize
the sum of emissions under a balanced budget rule, then, in an interior Stackelberg
Cournot equilibrium, a uniform per unit tax is the only taxation mechanism which
reduces the emissions of the leader (resp. follower) whenever the strategies of the
leader and of follower are substitutes and the produced commodity is not strongly
preferred to the other good. Second, the way the emissions of the leader and the
follower increase with the price of permits depends on preferences. More speci�-
cally, the payo¤s of the traders of type II (the polluted traders) increase with the
price of permits either when there is a large number of traders of type II or when
the consumers strongly prefer the nonproduced commodity.
The model was linear in the production and the polluting technologies. Nonlin-

earities in the production technology and dynamic/intertemporal features such as
in the introduction of time in the production activity are left for further researches.

7. APPENDIX

7.1. Appendix A: computation of the SCE strategies

Let us solve the game � by backward induction. To this end, consider, in the
second stage of the game, the behavior of both types of followers. The problems of
follower of type I and of type II may be written:

(e2; q2) 2 argmax
�


�2
e2 � q2

�� Pn
j=1 bj

q1 + q2
q2 � e2

!1��
; (A1)

bj 2 argmax
 

q1 + q2
bj +

P
�j 6=j b�j

bj

!��
1

n
� bj

�1��
��(e1+e2), j = 1; :::; n. (A2)

The su¢ cient �rst-order conditions for an interior solution for the follower of
type I, i.e., @�2(q1;q2;b)@q2

= 0 and @�2(q1;q2;b)
@e2

= 0, may be written as:

"
��

 Pn
j=1 bj

q1 + q2
q2 � e2

!
+ (1� �)

Pn
j=1 bj

(q1 + q2)2
q1

�


�2
e2 � q2

�#
A = 0; (A3)

"
�


�2

 Pn
j=1 bj

q1 + q2
q2 � e2

!
� (1� �)

�


�2
e2 � q2

�#
A = 0; (A4)
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where A �
�

�2
e2 � q2

���1 �Pn
j=1 bj

q1+q2
q2 � e2

���
. For the followers of type II, we

have @�j(e1;e2;q;bj ;b�j)
@bj

= 0, j 2 f1; :::; ng, which may be written as:

"
�

P
�j;�j 6=j b�j

(bj +
P

�j;�j 6=j b�j)
2

�
1

n
� bj

�
� (1� �) bj

bj +
P

�j;�j 6=j b�j

#
B = 0, (A5)

where B �
�

q1+q2
bj+

P
�j;�j 6=j b�j

bj

���1 �
1
n � bj

���
.

From (A3) and (A4), we deduce:Pn
j=1 bj

(q1 + q2)2
q1 = �2. (A6)

The solution to (A6) and to (A5) yield the optimal decision mappings:

q2(q1; b1; :::; bn) = �q1 +
s
1

�2

Xn

j=1
bjq1; (A7)

bj(q1; q2;b�j) =
�

n

n� 1
n� � , j 2 f1; :::; ng, (A8)

where we assume bj = b�j , for all j 6= �j.
Therefore, in the �rst stage of the game, the problem of the leader may be

written:

(~e1; ~q1) 2 argmax
�


�1
e1 � q1

�� r
��2

n� 1
n� �q1 � e1

!1��
. (A9)

The su¢ cient �rst-order conditions (the function
q
��2

n�1
n��q1 is strictly concave

in q1), namely
@�1(q1;q2(q1);b)

@q1
= 0 and @�1(q1;q2(q1);b)

@e1
= 0 may be written:

"
��

 r
�2�

n� 1
n� �q1 � e1

!
+
1� �
2

r
��2

n� 1
n� �q

� 1
2

1

�


�1
e1 � q1

�#
A0 = 0;

(A10)

"
�


�1

 r
��2

n� 1
n� �q1 � e1

!
� (1� �)

�


�1
e1 � q1

�#
A0 = 0; (A11)

where A0 �
�
1
�1
e1 � q1

���1 �q
��2

n�1
n��q1 � 1e1

���
.

By considering the terms in brackets in (A3) an (A4), and by equalizing and
cancelling, leads to:

1

2

r
��2

n� 1
n� �q

� 1
2

1 = .

The solution of (A12) yields the ~q1 = �
4

�2
(�1)

2
n�1
n�� . From (A7) and (A8), we

deduce ~q2 = �
2�1

n�1
n�� (1 �

1
2
�2
�1
), and ~bj = �

n
n�1
n�� , j = 1; :::; n. Then, we deduce the

market price:
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~pX = 2�1. (A12)

From (A11), we deduce ~e1 =
�(1+�)
4

�2
�1

n�1
n�� , and from (A4), we deduce ~e2 =

�
 (1 �

1
2
�2
�1
)( 2��1+(1��)�22�1

) n�1n�� , which are the magnitudes given in Proposition 1.
Then, we deduce (14)-(19).
Finally, by using (A7), it is easy to check that @q2(:)@q1

= �1 + �2
�1
S 0 if �1 S �2.

So, the game diplays strategic substituability (resp. complementarity) between the
leader and her direct follower when �1 < �2 (resp. �1 > �2).

7.2. Appendix B: computation of the CE

Consider now the CE in which all traders behave in a simultaneous move game.
The problems of all traders may be written:

(êi; q̂i) 2 argmax
�


�i
ei � qi

�� Pn
j=1 bj

q1 + q2
qi � ei

!1��
, i = 1; 2; (B1)

b̂j 2 argmax
 

q1 + q2
bj +

P
�j 6=j b�j

bj

!��
1

n
� bj

�1��
��(e1+e2), j = 1; :::; n. (B2)

The su¢ cient �rst-order conditions for an interior solution are given by (A5)
for j 2 f1; :::; ng, and by (B3)-(B4) for i 2 f1; 2g, with:

"
��

 Pn
j=1 bj

qi + q�i
qi � ei

!
+ (1� �)

Pn
j=1 bj

(qi + q�i)2
q�i

�


�i
ei � qi

�#
C = 0; (B3)

"
�


�1

 Pn
j=1 bj

qi + q�i
qi � ei

!
� (1� �)

�


�i
ei � qi

�#
C = 0, i = 1; 2, (B4)

where C �
�

�i
ei � qi

���1 �Pn
j=1 bj

qi+q�i
qi � ei

���
.

The solutions to these equations are the optimal decision mappings, which are
given by:

q1(q2; b1; :::; bn) = �q2 +
s
1

�1

Xn

j=1
bjq2; (B5)

q2(q1; b1; :::; bn) = �q1 +
s
1

�2

Xn

j=1
bjq1; (B6)

bj(q1; q2;b�j) =
�

n

n� 1
n� � , j 2 f1; :::; ng, (B7)

where we assume bj = b�j , for all j 6= �j.
The solutions to (B5)-(B7) are given by:

16



(q̂1; q̂2) =

�
��2

(�1 + �2)
2

n� 1
n� �;

��1
(�1 + �2)

2

n� 1
n� �

�
; (B8)

b̂j =
�

n

n� 1
n� �; j = 1; :::; n. (B9)

Therefore, the equilibrium relative market price is given by:

p̂X = �1 + �2. (B10)

Then, we deduce the emissions:

(ê1; ê2) =

�
�



�2(�1 + ��2)

(�1 + �2)
2

n� 1
n� �;

�



�1(�2 + ��1)

(�1 + �2)
2

n� 1
n� �

�
. (B11)

The allocations are then:

(x̂1; ŷ1) =

 
1

�1

�
��2

�1 + �2

�2
n� 1
n� �; �(1� �)

�
�2

�1 + �2

�2
n� 1
n� �

!
; (B12)

(x̂2; ŷ2) =

 
1

�2

�
��1

�1 + �2

�2
n� 1
n� �; �(1� �)

�
�1

�1 + �2

�2
n� 1
n� �

!
; (B13)

(x̂j ; ŷj) =

�
�

�1 + �2

1

n

n� 1
n� �;

1� �
n� �

�
, j = 1; :::; n. (B14)

Therefore, the CE payo¤s of traders i = 1; 2 are given by:

�̂1 = �
�+1

�
�2

�1 + �2

�2�
1

�1

��
(1� �)1�� n� 1

n� � ; (B15)

�̂2 = �
�+1

�
�1

�1 + �2

�2�
1

�2

��
(1� �)1�� n� 1

n� � ; (B16)

and, the CE payo¤s of traders j 2 f1; :::; ng are given by:

�̂j =

�
�

�1+�2

n�1
n

��
(1� �)1��

n� � � ���2(�1 + ��2) + �1(�2 + ��1)
(�1 + �2)

2

n� 1
n� � . (B17)

7.3. Appendix C: the SCE with taxations

In this Appendix we determine the SCE emissions by encompassing the three
taxation mechanisms. To this end, let (t;�; � ) � (t1; t2; �1; �2; �1; �2), and let us
rewrite the payo¤s (21)-(23) as:

�i(:) =

�


�i
(1� ti)ei � qi

��  Pn
j=1 bj(1� � i)P2
i=1(1� � i)qi

� �i

!
qi � (1� ti)ei

!1��
,

(C1)
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where �i(:) � �i(ei; qi;q�i;b; t;�; � ), i = 1; 2.
Consider the followers. Di¤erentiating the above expression with respect to q2

and e2 leads to the su¢ cient �rst-order conditions:

@�2(:)

@q2
= f��

" Pn
j=1 bj(1� �2)P2
i=1(1� � i)qi

� �2

!
q2 � (1� t2)e2

#
+

(1� �)
"Pn

j=1 bj(1� �1)(1� �2)q1
(
P2

i=1(1� � i)qi)2
� �2

#�


�2
(1� t2)e2 � q2

�
gE = 0; (C2)

@�2(:)

@e2
= f� 

�2
(1� t2)

" Pn
j=1 bj(1� �2)P2
i=1(1� � i)qi

� �2

!
q2 � (1� t2)e2

#
�

(1� �)(1� t2)
�


�2
(1� t2)e2 � q2

�
gE = 0, (C3)

where E �
�

�2
(1� t2)e2 � q2

���1 ��Pn
j=1 bj(1��2)P2
i=1(1�� i)qi

� �2
�
q2 � (1� t2)e2

���
.

The optimal decision mappings of all followers are given by:

q2(q1;b; t;�; � ) = �
1� �1
1� �2

q1 +
1

1� �2

s
(1� �1)(1� �2)

�2 + �2

Xn

j=1
bjq1; (C4)

bj(q1; q2;b�j ; t;�; � ) =
�

n

n� 1
n� � , j 2 f1; :::; ng. (C5)

Therefore, in the �rst stage of the game, the problem of the leader may be
written:

max

�


�1
(1� t1)e1 � q1

��0@s (1� �1)(�2 + �2)Pn
j=1 bj

1� �2
q1 � �1q1 � (1� t1)e1

1A1��

.

(C6)
The �rst-order conditions, i.e., @�1(q1;q2(q1);b;t;�;� )@q1

= 0 and @�1(q1;q2(q1);b;t;�;� )
@e1

=
0, may be written:

f��
�r

1� �1
1� �2

(�2 + �2)
Xn

j=1
bjq1 � �1q1 � (1� t1)e1

�
+

(1��)
�
1

2

r
�
n� 1
n� �

1� �1
1� �2

(�2 + �2)q
� 1
2

1 � �1
��



�1
(1� t1)e1 � q1

�
gF = 0; (C7)

f� 
�1
(1� t1)

�r
1� �1
1� �2

(�2 + �2)
Xn

j=1
bjq1 � �1q1 � (1� t1)e1

�
�

(1� �)(1� t1)
�


�1
(1� t1)e1 � q1

�
gF = 0, (C8)
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where F �
�

�1
(1� t1)e1 � q1

���1 �q
1��1
1��2 (�2 + �2)

Pn
j=1 bjq1 � �1q1 � (1� t1)e1

���
.

The solution to (C7)-(C8) is given by:

~q1(t;�; � ) =
�

4

�2 + �2
(�1 + �1)

2

1� �1
1� �2

n� 1
n� � ; (C9)

Then, from (C4), we deduce:

~q2(t;�; � ) =
�

2

1

�1 + �1

1� �1
1� �2

�
1� 1

2

�2 + �2
�1 + �1

1� �1
1� �2

�
n� 1
n� � , (C10)

which by letting (~q01; ~q
0
2) � (~q1(t;�; � ); ~q2(t;�; � )) yields the values in Proposition

(4).
The market price may be written:

~pX(t;�; � ) = 2
�1 + �1
1� �1

. (C11)

By using the �rst-order conditions, we deduce the emissions:

~e1(t;�; � ) =
(1 + �)�1 + ��1

(1� t1)
~q1(t;�; � ) (C12)

~e2(t;�; � ) =
�[(2(�1 + �1)(1� �2)� (1� �1)�2)] + (1� �)�2(1� �1)

(1� t2)(1� �1)
~q2(t;�; � ),

(C13)
which by letting (~e01; ~e

0
2) � (~e1(t;�; � ); ~e2(t;�; � )) yields the values in Proposition

(4).
We now consider the thee taxation mechanisms. Therefore, (21) holds when

� = � = 0; (22) holds when t = � = 0; and (23) holds when t = � = 0.
We consider now the e¤ects of taxation on emissions in the SCE. Therefore, let

�1 = �2 = �1 = �2 = 0. Then, from (C12)-(C13), we deduce:

~e1(t1; t2) =
�(1 + �)

4

�2
�1

1

1� t1
n� 1
n� � ; (C14)

~e2(t1; t2) =
�

2

2��1 + (1� �)�2
�1

�
1� 1

2

�2
�1

�
1

1� t2
n� 1
n� � . (C15)

Then, we get:

@~ei(t1; t2)

@ti
> 0, i = 1; 2. (C16)

Now, let t1 = t2 = �1 = �2 = 0. Then, from (C12)-(C13), we deduce:

~e1(�1; �2) =
�

4

[(1 + �)�1 + ��1](�2 + �2)

(�1 + �1)
2

n� 1
n� � ; (C17)

~e2(�1; �2) =
�

2

�[(2(�1 + �1)� �2)] + (1� �)�2
�1 + �1

�
1� 1

2

�2 + �2
�1 + �1

�
n� 1
n� � . (C18)

Then, some computations yield:
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@~e1(�1; �2)

@�1
< 0, and

@~e1(�1; �2)

@�2
> 0; (C19)

@~e2(�1; �2)

@�2
< 0, and

@~e2(�1; �2)

@�1
> 0. (C20)

Finally, let t1 = t2 = �1 = �2 = 0. Then, we have:

~e1(�1; �2) =
�(1 + �)

4

�2
�1

1� �1
1� �2

n� 1
n� � ; (C21)

~e2(�1; �2) =
�

2

1

�1

2��1(1� �2) + (1� �)�2
1� �2

�
1� 1

2

�2
�1

1� �1
1� �2

�
n� 1
n� � . (C22)

Then, some computations yield:

@~e1(�1; �2)

@�1
< 0, and

@~e1(�1; �2)

@�2
> 0; (C23)

@~e2(�1; �2)

@�2
< 0, and

@~e2(�1; �2)

@�1
> 0. (C24)

7.4. Appendix D: the CE with taxations

In this Appendix we determine the SCE emissions by encompassing the three
taxation mechanisms. To this end, consider the payo¤s given by (C1). The su¢ cient
�rst-order conditions for an interior solution are given by (C3), and by trader for
trader i 2 f1; 2g:

@�i(:)

@qi
= f��

" Pn
j=1 bj(1� � i)

(1� � i)qi + (1� ��i)q�i
� �i

!
qi � (1� ti)ei

#
+

(1� �)
"Pn

j=1 bj(1� �1)(1� �2)q�i
[(1� � i)qi + (1� ��i)q�i]2

� �i

#�


�i
(1� ti)ei � qi

�
gE = 0; (D1)

@�i(:)

@ei
= f� 

�i
(1� ti)

" Pn
j=1 bj(1� � i)

(1� � i)qi + (1� ��i)q�i
� �i

!
qi � (1� ti)ei

#
�

(1� �)(1� ti)
�


�i
(1� ti)ei � qi

�
gE = 0, (D2)

where E �
�

�i
(1� ti)ei � qi

���1 �� Pn
j=1 bj(1�� i)

(1�� i)qi+(1���i)q�i � �i
�
qi � (1� ti)ei

���
.

The unique solution to these equations are given by:

q1(q2;b; t;�; � ) = �
1� �2
1� �1

q2 +
1

1� �1

s
(1� �1)(1� �2)

�1 + �1

Xn

j=1
bjq2; (D3)
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q2(q1;b; t;�; � ) = �
1� �1
1� �2

q1 +
1

1� �2

s
(1� �1)(1� �2)

�2 + �2

Xn

j=1
bjq1; (D4)

bj(q1; q2;b�j ; t;�; � ) =
�

n

n� 1
n� � , j 2 f1; :::; ng, (D5)

where we assume bj = b�j , for all j 6= �j.
The solution is given by:

q̂1(t;�; � ) = �
(�2 + �2)(1� �1)(1� �2)

[(1� �1)(�2 + �2) + (1� �2)(�1 + �1)]2
n� 1
n� � ; (D6)

q̂2(t;�; � ) = �
(�1 + �1)(1� �1)(1� �2)

[(1� �1)(�2 + �2) + (1� �2)(�1 + �1)]2
n� 1
n� � ; (D7)

b̂j(t;�; � ) =
�

n

n� 1
n� �; j = 1; :::; n. (D8)

Therefore, the equilibrium relative market price is given by:

p̂X(t;�; � ) =
(1� �1)(�2 + �2) + (1� �2)(�1 + �1)

(1� �1)(1� �2)
. (D9)

By using the �rst-order conditions, we deduce the emissions:

ê1(t;�; � ) =
�(1� �1)(�2 + �2) + �1(1� �2)

(1� t1)(1� �2)
q̂1(t;�; � ); (D10)

ê2(t;�; � ) =
�(1� �2)(�1 + �1) + �2(1� �1)

(1� t2)(1� �1)
q̂2(t;�; � ). (D11)

We consider now the e¤ects of taxation on emissions in the CE. Therefore, let
�1 = �2 = �1 = �2 = 0. Then, we have:

ê1(t1; t2) =
��2 + �1
(1� t1)

��2
(�1 + �2)

2

n� 1
n� � ; (D10)

ê2(t1; t2) =
��1 + �2
(1� t2)

��1
(�1 + �2)

2

n� 1
n� � . (D11)

Then, we get:

@êi(t1; t2)

@ti
> 0, i = 1; 2. (D12)

Now, let t1 = t2 = �1 = �2 = 0. Then, we have:

ê1(�1; �2) = �
�(�2 + �2) + �1



�2 + �2
(�1 + �1 + �2 + �2)

2

n� 1
n� � ; (D13)

ê2(�1; �2) = �
�(�1 + �1) + �2



�1 + �1
(�1 + �1 + �2 + �2)

2

n� 1
n� � . (D14)

Then, we get:
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@ê1(�1; �2)

@�1
< 0, and

@ê1(�1; �2)

@�2
> 0; (D15)

and, as �i > 1, i = 1; 2, we have:

@ê2(�1; �2)

@�2
< 0, and

@ê2(�1; �2)

@�1
> 0. (D16)

Now, let t1 = t2 = �1 = �2 = 0. Then, we have:

ê1(�1; �2) =
�(1� �1)�2 + �1(1� �2)

(1� �2)
��2(1� �1)(1� �2)

[(1� �1)�2 + (1� �2)�1]2
n� 1
n� � ; (D17)

ê2(�1; �2) =
�(1� �2)�1 + �2(1� �1)

(1� �1)
��1(1� �1)(1� �2)

[(1� �1)�2 + (1� �2)�1]2
n� 1
n� � . (D18)

Then, we get:

@ê1(�1; �2)

@�1
< 0, and

@ê1(�1; �2)

@�2
> 0; (D19)

and, as � 2 [�1; 1], we have:

@ê2(�1; �2)

@�2
< 0, and

@ê2(�1; �2)

@�1
> 0. (D20)

Finally, assume that t1 = t2 = �1 = �2 = 0, and ~�1 = ~�2 = ~�. Some tedious
computations lead to:

@ê1(�; �)

@� j�=~�
=
�



2�(�1 + ~�)(�2 + ~�) + �1(�1 � �2)
(�1 + ~� + �2 + ~�)

3

n� 1
n� � ; (D21)

@ê2(�; �)

@� j�=~�
=
�



2�(�1 + ~�)(�2 + ~�) + �2(�2 � �1)
(�1 + ~� + �2 + ~�)

3

n� 1
n� � . (D22)

If �1 < �2, then
@ê1(�;�)
@� j�=~� < 0, and @ê2(�;�)

@� j�=~� > 0. And, if @ê1(�;�)
@� j�=~� <

0, then � < �1�2�(�1)2
2�(�1+~�)(�2+~�)

, so we must have �1 < �2 as � > 0. But, then
@ê2(�;�)
@� j�=~� > 0. Therefore, we cannot have at the same time @ê1(�;�)

@� j�=~� < 0

and @ê2(�;�)
@� j�=~� < 0.

7.5. Appendix E: the SCE with a permits market

Consider, in the second stage of the game, the behavior of the follower of type
I (the problem of each follower of type II is not modi�ed), which may be written:

(e2; q2) 2 max
�


�2
e2 � q2

�� Pn
j=1 bj

q1 + q2
q2 � e2 + r(�e2 � e2)

!1��
. (E1)

By following the same procedure as in Appendices A and C, the optimal decision
mappings are given by (A8), i.e., bj = �

n
n�1
n�� , j = 1; :::; n, and by:
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q2(q1; b1; :::; bn) = �q1 +
s
1

�2



 + r

Xn

j=1
bjq1. (E2)

Therefore, in the �rst stage of the game, the problem of the leader may be
written:

(~e1(r); ~q1(r)) 2 max
�


�1
e1 � q1

���r
��2

 + r



n� 1
n� �q1 � e1 + r(�e1 � e1)

�1��
.

(E3)

The su¢ cient �rst-order conditions (the function
q
��2

+r


n�1
n��q1 is strictly

concave in q1), namely
@�1(q1;q2(q1);b)

@q1
= 0 and @�1(q1;q2(q1);b)

@e1
= 0 may be written:

f��[
r
��2

n� 1
n� �q1�e1+r(�e1�e1)]+

(1� �)
q
��2

+r


n�1
n��q

� 1
2

1

�

�1
e1 � q1

�
2

gA00 = 0;
(E4)

[�

q
��2

+r


n�1
n��q1 � e1 + r(�e1 � e1)

�1
�(1��)(+r)

�


�1
e1 � q1

�
]A00 = 0; (E5)

where A00 �
�

�1
e1 � q1

���1 �q
��2

+r


n�1
n��q1 � e1 + r(�e1 � e1)

���
.

By considering the terms in brackets in (E4) and (E5), and by equalizing and
cancelling, leads to:

1

2

r
��2

 + r



n� 1
n� �q

� 1
2

1 = �1
 + r


. (E6)

The solution of (E6) yields the ~q1(r) = �
�2

4(�1)
2


+r

n�1
n�� . From (E2), we deduce

~q2 =
�
2�1

n�1
n�� (1 �

1
2
�2
�1
). We also have ~bj = �

n
n�1
n�� , j = 1; :::; n.. Therefore, the

market price is given by:

~pX(r) =
 + r


~pX . (E6)

From (E5), we deduce ~e1(r) = �
+r r�e1 +

�(1+�)
+r

�2
4�1

n�1
n�� , and from (E4), we

deduce ~e2(r) = �
+r r�e2+

�
+r (1�

1
2
�2
�1
)( 2��1+(1��)�22�1

) n�1n�� , which are the magnitudes
of Proposition 8. Finally, we deduce (27)-(29).

7.6. Appendix F: the CE with a permits market

The problems of all traders may be written:

(êi; q̂i) 2 max
�


�i
ei � qi

�� Pn
j=1 bj

q1 + q2
qi � ei + r(�ei � ei)

!1��
, i = 1; 2; (F1)
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b̂j 2 max
 

q1 + q2
bj +

P
�j 6=j b�j

bj

!��
1

n
� bj

�1��
� �(e1 + e2), j = 1; :::; n. (F2)

The su¢ cient �rst-order conditions for an interior solution are given by (A5)
for j 2 f1; :::; ng, and by (F3)-(F4) for i 2 f1; 2g, with:

f��[
Pn

j=1 bj

qi + q�i
qi�ei+r(�ei�ei)]+(1��)

Pn
j=1 bj

(qi + q�i)2
q�i

�


�i
ei � qi

�
gC 0 = 0; (F3)

f� 
�1
[

Pn
j=1 bj

qi + q�i
qi � ei + r(�ei � ei)]� (1��)

�


�i
ei � qi

�
gC 0 = 0, i = 1; 2, (F4)

where C 0 �
�

�i
ei � qi

���1 �Pn
j=1 bj

qi+q�i
qi � ei + r(�ei � ei)

���
.

The solutions to these equations are the optimal decision mappings, which are
given by:

q1(q2; b1; :::; bn; r) = �q2 +
s
1

�1



 + r

Xn

j=1
bjq2; (F5)

q2(q1; b1; :::; bn; r) = �q1 +
s
1

�2



 + r

Xn

j=1
bjq1; (F6)

bj(q1; q2;b�j ; r) =
�

n

n� 1
n� � , j 2 f1; :::; ng, (F7)

where we assume bj = b�j , for all j 6= �j.
The solutions to (F5)-(F7) are given by:

(q̂1(r); q̂2(r)) =

�
��2

(�1 + �2)
2



 + r

n� 1
n� �;

��1
(�1 + �2)

2



 + r

n� 1
n� �

�
; (F8)

b̂j(r) =
�

n

n� 1
n� �; j = 1; :::; n. (F9)

Therefore, the equilibrium relative market price is given by:

p̂X(r) = (�1 + �2)
 + r


. (F10)

Then, we deduce the emissions:

(ê1(r); ê2(r)) =

�
�

r

 + r
�e1 +



 + r
ê1; �

r

 + r
�e2 +



 + r
ê2

�
. (F11)

The allocations are then:

(x̂1(r); ŷ1(r)) =

�
�


�1

r

 + r
�e1 +



 + r
x̂1; (1� �)r�e1 + ŷ1

�
; (F12)
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(x̂2(r); ŷ2(r)) =

�
�


�2

r

 + r
�e2 +



 + r
x̂2; (1� �)r�e2 + ŷ2

�
; (F13)

(x̂j(r); ŷj(r)) =

�


 + r

�

�1 + �2

1

n

n� 1
n� �;

1� �
n� �

�
, j = 1; :::; n. (F14)

Therefore, the CE payo¤s for traders i = 1; 2 are given by:

�̂1(r) =

�
�


�1

r

 + r
�e1 +



 + r
x̂1

��
((1� �)r�e1 + ŷ1)1�� ; (F15)

�̂2(r) =

�
�


�2

r

 + r
�e2 +



 + r
x̂2

��
((1� �)r�e2 + ŷ2)1�� ; (F16)

and, those for traders j 2 f1; :::; ng are given by:

�̂j(r) =

�
�

�1+�2


+r

n�1
n

��
(1� �)1��

n� � � � + �r
 + r

(�e1 + �e2). (F17)

Finally, we have that:

@�̂j(r)

@r
=
(1� �)
( + r)2

8<:�(�e1 + �e2)� �
h

�
(1��)

1
�1+�2


+r

n�1
n

i�
n� �

9=; . (F18)

Therefore, we conclude:

@�̂j(r)

@r
> 0 whenever �! 0 or n! +1. (F19)
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